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PREFACE.

About ten years ago I gave a course of lectures on Trigonometric Series,
following closely the treatment of that subject in Riemann’s “Partielle Differen-
tialgleichungen,” to accompany a short course on The Potential Function, given
by Professor B. O. Peirce.

My course has been gradually modified and extended until it has become an
introduction to Spherical Harmonics and Bessel’s and Lamé’s Functions.

Two years ago my lecture notes were lithographed by my class for their own
use and were found so convenient that I have prepared them for publication,
hoping that they may prove useful to others as well as to my own students.
Meanwhile, Professor Peirce has published his lectures on “The Newtonian Po-
tential Function” (Boston, Ginn & Co.), and the two sets of lectures form a
course (Math. 10) given regularly at Harvard, and intended as a partial intro-
duction to modern Mathematical Physics.

Students taking this course are supposed to be familiar with so much of
the infinitesimal calculus as is contained in my “Differential Calculus” (Boston,
Ginn & Co.) and my “Integral Calculus” (second edition, same publishers), to
which I refer in the present book as “Dif. Cal.” and “Int. Cal.” Here, as in the
“Calculus,” I speak of a “derivative” rather than a “differential coefficient,” and
use the notation Dx instead of δ

δx for “partial derivative with respect to x.”
The course was at first, as I have said, an exposition of Riemann’s “Partielle

Differentialgleichungen.” In extending it, I drew largely from Ferrer’s “Spherical
Harmonics” and Heine’s “Kugelfunctionen,” and was somewhat indebted to
Todhunter (“Functions of Laplace, Bessel, and Lamé”), Lord Rayleigh (“Theory
of Sound”), and Forsyth (“Differential Equations”).

In preparing the notes for publication, I have been greatly aided by the
criticisms and suggestions of my colleagues, Professor B. O. Peirce and Dr.
Maxime Bôcher, and the latter has kindly contributed the brief historical sketch
contained in Chapter IX.

W. E. BYERLY.
Cambridge, Mass., Sept. 1893.
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CHAPTER I.

INTRODUCTION.

1. In many important problems in mathematical physics we are obliged
to deal with partial differential equations of a comparatively simple form.

For example, in the Analytical Theory of Heat we have for the change of
temperature of any solid due to the flow of heat within the solid, the equation

Dtu = a2(D2
xu+D2

yu+D2
zu), 1 [I]

where u represents the temperature at any point of the solid and t the time.
In the simplest case, that of a slab of infinite extent with parallel plane

faces, where the temperature can be regarded as a function of one coördinate,
[I] reduces to

Dtu = a2D2
xu, [II]

a form of considerable importance in the consideration of the problem of the
cooling of the earth’s crust.

In the problem of the permanent state of temperatures in a thin rectangular
plate, the equation [I] becomes

D2
xu+D2

yu = 0. [III]

In polar or spherical coördinates [I] is less simple, it is

Dtu =
a2

r2

[
Dr(r2Dru) +

1
sin θ

Dθ(sin θDθu) +
1

sin2 θ
D2
φu

]
. [IV]

In the case where the solid in question is a sphere and the temperature at any
point depends merely on the distance of the point from the centre [IV] reduces
to

Dt(ru) = a2D2
r(ru). [V]

In cylindrical coördinates [I] becomes

Dtu = a2[D2
ru+

1
r
Dru+

1
r2
D2
φu+D2

zu]. [VI]

In considering the flow of heat in a cylinder when the temperature at any
point depends merely on the distance r of the point from the axis [VI] becomes

Dtu = a2(D2
ru+

1
r
Dru). [VII]

In Acoustics in several problems we have the equation

D2
t y = a2D2

xy; [VIII]
1For the sake of brevity we shall often use the symbol ∇2 for the operation D2

x+D2
y +D2

z ;

and with this notation equation [I] would be written Dtu = a2∇2u.
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for instance, in considering the transverse or the longitudinal vibrations of a
stretched elastic string, or the transmission of plane sound waves through the
air.

If in considering the transverse vibrations of a stretched string we take ac-
count of the resistance of the air [VIII] is replaced by

D2
t y + 2kDty = a2D2

xy. [IX]

In dealing with the vibrations of a stretched elastic membrane, we have the
equation

D2
t z = c2(D2

xz +D2
yz), [X]

or in cylindrical coördinates

D2
t z = c2(D2

rz +
1
r
Drz +

1
r2
D2
φz). [XI]

In the theory of Potential we constantly meet Laplace’s Equation

D2
xV+D2

yV +D2
zV = 0 [XII]

or ∇2V = 0

which in spherical coördinates becomes

1
r2

[
rD2

r(rV ) +
1

sin θ
Dθ(sin θDθV ) +

1
sin2 θ

D2
φV

]
= 0, [XIII]

and in cylindrical coördinates

D2
rV +

1
r
DrV +

1
r2
D2
φV +D2

zV = 0. [XIV]

In curvilinear coördinates it is

h1h2h3

[
Dρ1

(
h1

h2h3
Dρ1V

)
+Dρ2

(
h2

h3h1
Dρ2V

)
+Dρ3

(
h3

h1h2
Dρ3V

)]
= 0;

[XV]
where f1(x, y, z) = ρ1, f2(x, y, z) = ρ2, f3(x, y, z) = ρ3

represent a set of surfaces which cut one another at right angles, no matter what
values are given to ρ1, ρ2, and ρ3; and where

h2
1 = (Dxρ1)2 + (Dyρ1)2 + (Dzρ1)2

h2
2 = (Dxρ2)2 + (Dyρ2)2 + (Dzρ2)2

h2
3 = (Dxρ3)2 + (Dyρ3)2 + (Dzρ3)2,

and, of course, must be expressed in terms of ρ1, ρ2, and ρ3.
If it happens that ∇2ρ1 = 0, ∇2ρ2 = 0, and ∇2ρ3 = 0, then Laplace’s

Equation [XV] assumes the very simple form

h2
1D

2
ρ1V + h2

2D
2
ρ2V + h2

3D
2
ρ3V = 0. [XVI]
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2. A differential equation is an equation containing derivatives or differ-
entials with or without the primitive variables from which they are derived.

The general solution of a differential equation is the equation expressing the
most general relation between the primitive variables which is consistent with
the given differential equation and which does not involve differentials or deriva-
tives. A general solution will always contain arbitrary (i. e., undetermined)
constants or arbitrary functions.

A particular solution of a differential equation is a relation between the
primitive variables which is consistent with the given differential equation, but
which is less general than the general solution, although included in it.

Theoretically, every particular solution can be obtained from the general
solution by substituting in the general solution particular values for the arbitrary
constants or particular functions for the arbitrary functions; but in practice it is
often easy to obtain particular solutions directly from the differential equation
when it would be difficult or impossible to obtain the general solution.

3. If a problem requiring for its solution the solving of a differential equa-
tion is determinate, there must always be given in addition to the differential
equation enough outside conditions for the determination of all the arbitrary
constants or arbitrary functions that enter into the general solution of the equa-
tion; and in dealing with such a problem, if the differential equation can be
readily solved the natural method of procedure is to obtain its general solu-
tion, and then to determine the constants or functions by the aid of the given
conditions.

It often happens, however, that the general solution of the differential equa-
tion in question cannot be obtained, and then, since the problem if determinate
will be solved if by any means a solution of the equation can be found which
will also satisfy the given outside conditions, it is worth while to try to get par-
ticular solutions and so to combine them as to form a result which shall satisfy
the given conditions without ceasing to satisfy the differential equation.

4. A differential equation is linear when it would be of the first degree
if the dependent variable and all its derivatives were regarded as algebraic un-
known quantities. If it is linear and contains no term which does not involve
the dependent variable or one of its derivatives, it is said to be linear and ho-
mogeneous.

All the differential equations collected in Art. 1 are linear and homogeneous.

5. If a value of the dependent variable has been found which satisfies a
given homogeneous, linear, differential equation, the product formed by multi-
plying this value by any constant will also be a value of the dependent variable
which will satisfy the equation.

For if all the terms of the given equation are transposed to the first member,
the substitution of the first-named value must reduce that member to zero;
substituting the second value is equivalent to multiplying each term of the result
of the first substitution by the same constant factor, which therefore may be
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taken out as a factor of the whole first member. The remaining factor being
zero, the product is zero and the equation is satisfied.

If several values of the dependent variable have been found each of which
satisfies the given differential equation, their sum will satisfy the equation; for if
the sum of the values in question is substituted in the equation each term of the
sum will give rise to a set of terms which must be equal to zero, and therefore
the sum of these sets must be zero.

6. It is generally possible to get by some simple device particular solutions
of such differential equations as those we have collected in Art. 1. The object of
the branch of mathematics with which we are about to deal is to find methods of
so combining these particular solutions as to satisfy any given conditions which
are consistent with the nature of the problem in question.

This often requires us to be able to develop any given function of the variables
which enter into the expression of these conditions in terms of normal forms
suited to the problem with which we happen to be dealing, and suggested by
the form of particular solution that we are able to obtain for the differential
equation.

These normal forms are frequently sines and cosines, but they are often
much more complicated functions known as Legendre’s Coefficients, or Zonal
Harmonics; Laplace’s Coefficients, or Spherical Harmonics: Bessel’s Functions,
or Cylindrical Harmonics; Lamé’s Functions, or Ellipsoidal Harmonics, &c.

7. As an illustration, let us take Fourier’s problem of the permanent state
of temperatures in a thin rectangular plate of breadth π and of infinite length
whose faces are impervious to heat. We shall suppose that the two long edges of
the plate are kept at the constant temperature zero, that one of the short edges,
which we shall call the base of the plate, is kept at the temperature unity, and
that the temperatures of points in the plate decrease indefinitely as we recede
from the base; we shall attempt to find the temperature at any point of the
plate.

Let us take the base as the axis of X and one end of the base as the origin.
Then to solve the problem we are to find the temperature u of any point from
the equation

D2
xu+D2

yu = 0 [III] Art. 1

subject to the conditions

u = 0 when x = 0 (1)
u = 0 “ x = π (2)
u = 0 “ y =∞ (3)
u = 1 “ y = 0. (4)

We shall begin by getting a particular solution of [III], and we shall use a
device which always succeeds when the equation is linear and homogeneous and
has constant coefficients.
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Assume2 u = eαy+βx, where α and β are constants, substitute in [III] and
divide by eαy+βx, and we have α2 + β2 = 0. If, then, this condition is satisfied
u = eαy+βx is a solution.

Hence u = eαy±αxi 3 is a solution of [III], no matter what value may be given
to α.

This form is objectionable, since it involves an imaginary. We can, however,
readily improve it.

Take u = eαyeαxi, a solution of [III], and u = eαye−αxi, another solution
of [III]; add these values of u and divide the sum by 2 and we have eαy cosαx.
(v. Int. Cal. Art. 35, [1].) Therefore by Art. 5

u = eαy cosαx (5)

is a solution of [III]. Take u = eαyeαxi and u = eαye−αxi, subtract the second
value of u from the first and divide by 2i and we have eαy sinαx. (v. Int. Cal.
Art. 35, [2]). Therefore by Art. 5

u = eαy sinαx (6)

is a solution of [III].
Let us now see if out of these particular solutions we can build up a solution

which will satisfy the conditions (1), (2), (3), and (4).

Consider u = eαy sinαx. (6)

It is zero when x = 0 for all values of α. It is zero when x = π if α is a whole
number. It is zero when y = ∞ if α is negative. If, then, we write u equal
to a sum of terms of the form Ae−my sinmx, where m is a positive integer, we
shall have a solution of [III] which satisfies conditions (1), (2) and (3). Let this
solution be

u = A1e
−y sinx+A2e

−2y sin 2x+A3e
−3y sin 3x+A4e

−4y sin 4x+ · · · (7)

A1, A2, A3, A4, &c., being undetermined constants.
When y = 0 (7) reduces to

u = A1 sinx+A2 sin 2x+A3 sin 3x+A4 sin 4x+ · · · . (8)

If now it is possible to develop unity into a series of the form (8), our problem
is solved; we have only to substitute the coefficients of that series for A1, A2,
A3, &c. in (7).

It will be proved later that

1 =
4
π

(
sinx+

1
3

sin 3x+
1
5

sin 5x+
1
7

sin 7x+ · · ·
)

2This assumption must be regarded as purely tentative. It must be tested by substituting
in the equation, and is justified if it leads to a solution.

3We shall regularly use the symbol i for
√
−1.
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for all values of x between 0 and π; hence our required solution is

u =
4
π

[
e−y sinx+

1
3
e−3y sin 3x+

1
5
e−5y sin 5x+

1
7
e−7y sin 7x+ · · ·

]
(9)

for this satisfies the differential equation and all the given conditions.
If the given temperature of the base of the plate instead of being unity is a

function of x, we can solve the problem as before if we can express the given
function of x as a sum of terms of the form A sinmx, where m is a whole number.

The problem of finding the value of the potential function at any point of a
long, thin, rectangular conducting sheet, of breadth π, through which an electric
current is flowing, when the two long edges are kept at potential zero, and one
short edge at potential unity, is mathematically identical with the problem we
have just solved.

Example.

Taking the temperature of the base of the plate described above as 100◦

centigrade, and that of the sides of the plate as 0◦, compute the temperatures
of the points

(a)
(π

6
, 1
)

; (b)
(π

3
, 2
)

; (c)
(π

2
, 3
)

,

correct to the nearest degree. Ans. (a) 26◦; (b) 15◦; (c) 6◦.

8. As another illustration, we shall take the problem of the transverse
vibrations of a stretched string fastened at the ends, initially distorted into
some given curve and then allowed to swing.

Let the length of the string be l. Take the position of equilibrium of the
string as the axis of X, and one of the ends as the origin, and suppose the string
initially distorted into a curve whose equation y = f(x) is given.

We have then to find an expression for y which will be a solution of the
equation

D2
t y = a2D2

xy [VIII] Art. 1,

while satisfying the conditions

y = 0 when x = 0 (1)
y = 0 “ x = l (2)
y = f(x) “ t = 0 (3)

Dty = 0 “ t = 0, (4)

the last condition meaning merely that the string starts from rest.
As in the last problem let4 y = eαx+βt and substitute in [VIII]. Divide by

eαx+βt and we have β2 = a2α2 as the condition that our assumed value of y
shall satisfy the equation.

y = eαx±aαt (5)
4See note on page 5.
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is, then, a solution of (VIII) whatever the value of α.
It is more convenient to have a trigonometric than an exponential form to

deal with, and we can readily obtain one by using an imaginary value for α in
(5). Replace α by αi and (5) becomes y = e(x±at)αi, a solution of [VIII]. Replace
α by −αi and (5) becomes y = e−(x±at)αi, another solution of [VIII]. Add these
values of y and divide by 2 and we have cosα(x±at). Subtract the second value
of y from the first and divide by 2i and we have sinα(x± at).

y = cosα(x+ at)
y = cosα(x− at)
y = sinα(x+ at)
y = sinα(x− at)

are, then, solutions of [VIII]. Writing y successively equal to half the sum of the
first pair of values, half their difference, half the sum of the last pair of values,
and half their difference, we get the very convenient particular solutions of [VIII].

y = cosαx cosαat
y = sinαx sinαat
y = sinαx cosαat
y = cosαx sinαat.

If we take the third form

y = sinαx cosαat

it will satisfy conditions (1) and (4), no matter what value may be given to α,
and it will satisfy (2) if α =

mπ

l
where m is an integer.

If then we take

y = A1 sin
πx

l
cos

πat

l
+A2 sin

2πx
l

cos
2πat
l

+A3 sin
3πx
l

cos
3πat
l

+ · · · (6)

where A1, A2, A3 · · · are undetermined constants, we shall have a solution of
[VIII] which satisfies (1), (2), and (4). When t = 0 it reduces to

y = A1 sin
πx

l
+A2 sin

2πx
l

+A3 sin
3πx
l

+ · · · (7)

If now it is possible to develop f(x) into a series of the form (7), we can solve
our problem completely. We have only to take the coefficients of this series as
values of A1, A2, A3 · · · in (6), and we shall have a solution of [VIII] which
satisfies all our given conditions.

In each of the preceding problems the normal function, in terms of which
a given function has to be expressed, is the sine of a simple multiple of the
variable. It would be easy to modify the problem so that the normal form
should be a cosine.

We shall now take a couple of problems which are much more complicated
and where the normal function is an unfamiliar one.
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9. Let it be required to find the potential function due to a circular wire
ring of small cross section and of given radius c, supposing the matter of the
ring to attract according to the law of nature.

We can readily find, by direct integration, the value of the potential function
at any point of the axis of the ring. We get for it

V =
M√
c2 + x2

(1)

where M is the mass of the ring, and x the distance of the point from the centre
of the ring.

Let us use spherical coördinates, taking the centre of the ring as origin and
the axis of the ring as the polar axis.

To obtain the value of the potential function at any point in space, we must
satisfy the equation

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) +
1

sin2 θ
D2
φV = 0, [XIII] Art. 1,

subject to the condition

V =
M

(c2 + r2)
1
2

when θ = 0. (1)

From the symmetry of the ring, it is clear that the value of the potential
function must be independent of φ, so that [XIII] will reduce to

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0. (2)

We must now try to get particular solutions of (2), and as the coefficients
are not constant, we are driven to a new device.

Let5 V = rmP , where P is a function of θ only, and m is a positive integer,
and substitute in (2), which becomes

m(m+ 1)rmP +
rm

sin θ
Dθ(sin θDθP ) = 0.

Divide by rm and use the notation of ordinary derivatives since P depends upon
θ only, and we have the equation

m(m+ 1)P +
1

sin θ

d
(

sin θ
dP

dθ

)
dθ

= 0, (3)

from which to obtain P .
Equation (3) can be simplified by changing the independent variable. Let

x = cos θ and (3) becomes

d

dx

[
(1− x2)

dP

dx

]
+m(m+ 1)P = 0. (4)

5See note on page 5.
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Assume6 now that P can be expressed as a sum or as a series of terms
involving whole powers of x multiplied by constant coefficients.

Let P =
∑
anx

n and substitute this value of P in (4). We get∑
[n(n− 1)anxn−2 − n(n+ 1)anxn +m(m+ 1)anxn] = 0, (5)

where the symbol
∑

indicates that we are to form all the terms we can by
taking successive whole numbers for n.

As (5) must be true no matter what the value of x, the coefficient of any
given power of x, as for instance xk, must vanish. Hence

(k + 2)(k + 1)ak+2 − k(k + 1)ak +m(m+ 1)ak = 0 (6)

and ak+2 = −m(m+ 1)− k(k + 1)
(k + 1)(k + 2)

ak. (7)

If now any set of coefficients satisfying the relation (7) be taken, P =
∑
akx

k

will be a solution of (4).

If k = m, ak+2 = 0, ak+4 = 0, &c.

Since it will answer our purpose if we pick out the simplest set of coefficients
that will obey the condition (7), we can take a set including am.

Let us rewrite (7) in the form

ak = − (k + 2)(k + 1)
(m− k)(m+ k + 1)

ak+2. (8)

We get from (8), beginning with k = m− 2,

am−2 = − m(m− 1)
2.(2m− 1)

am

am−4 =
m(m− 1)(m− 2)(m− 3)

2.4.(2m− 1)(2m− 3)
am

am−6 = −m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)
2.4.6.(2m− 1)(2m− 3)(2m− 5)

am, &c.

If m is even we see that the set will end with a0, if m is odd, with a1.

P = am

[
xm − m(m− 1)

2.(2m− 1)
xm−2 +

m(m− 1)(m− 2)(m− 3)
2.4.(2m− 1)(2m− 3)

xm−4 − · · ·
]

where am is entirely arbitrary, is, then, a solution of (4). It is found convenient
to take am equal to

(2m− 1)(2m− 3) · · · 1
m!

and it can be shown that with this value of am P = 1 when x = 1.
6See note on page 5.
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P is a function of x and contains no higher powers of x than xm. It is usual
to write it as Pm(x).

We proceed to compute a few values of Pm(x) from the formula

Pm(x) =
(2m− 1)(2m− 3) · · · 1

m!

[
xm − m(m− 1)

2.(2m− 1)
xm−2

+
m(m− 1)(m− 2)(m− 3)

2.4.(2m− 1)(2m− 3)
xm−4 − · · ·

]
. (9)

We have:

P0(x) = 1 or P0(cos θ) = 1
P1(x) = x “ P1(cos θ) = cos θ

P2(x) = 1
2 (3x2 − 1) “ P2(cos θ) = 1

2 (3 cos2 θ − 1)

P3(x) = 1
2 (5x3 − 3x) “ P3(cos θ) = 1

2 (5 cos3 θ − 3 cos θ)

P4(x) = 1
8 (35x4 − 30x2 + 3) or

P4(cos θ) = 1
8 (35 cos4 θ − 30 cos2 θ + 3)

P5(x) = 1
8 (63x5 − 70x3 + 15x) or

P5(cos θ) = 1
8 (63 cos5 θ − 70 cos3 θ + 15 cos θ).



(10)

We have obtained P = Pm(x) as a particular solution of (4) and P =
Pm(cos θ) as a particular solution of (3). Pm(x) or Pm(cos θ) is a new function,
known as a Legendre’s Coefficient, or as a Surface Zonal Harmonic, and occurs
as a normal form in many important problems.

V = rmPm(cos θ) is a particular solution of (2) and rmPm(cos θ) is sometimes
called a Solid Zonal Harmonic.

We can now proceed to the solution of our original problem.

V = A0r
0P0(cos θ) +A1rP1(cos θ) +A2r

2P2(cos θ) +A3r
3P3(cos θ) + · · · (11)

where A0, A1, A2, &c., are entirely arbitrary, is a solution of (2) (v. Art. 5).
When θ = 0 (11) reduces to

V = A0 +A1r +A2r
2 +A3r

3 + · · · ,

since, as we have said, Pm(x) = 1 when x = 1, or Pm(cos θ) = 1 when θ = 0.
By our condition (1)

V =
M

(c2 + r2)
1
2

when θ = 0.
By the Binomial Theorem

M

(c2 + r2)
1
2

=
M

c

[
1− 1

2
r2

c2
+

1.3
2.4

r4

c4
− 1.3.5

2.4.6
r6

c6
+ · · ·

]
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provided r < c. Hence

V =
M

c

[
P0(cos θ)− 1

2
r2

c2
P2(cos θ) +

1.3
2.4

r4

c4
P4(cos θ)

−1.3.5
2.4.6

r6

c6
P6(cos θ) + · · ·

]
(12)

is our required solution if r < c; for it is a solution of equation (2) and satisfies
condition (1).

Example.

Taking the mass of the ring as one pound and the radius of the ring as one
foot, compute to two decimal places the value of the potential function due to
the ring at the points

(a) (r = .2, θ = 0) ; (d) (r = .6, θ = 0) ; (f )
(
r = .6, θ =

π

3

)
;

(b)
(
r = .2, θ =

π

4

)
; (e)

(
r = .6, θ =

π

6

)
; (g)

(
r = .6, θ =

π

2

)
;

(c)
(
r = .2, θ =

π

2

)
; Ans. (a) .98; (b) .99; (c) 1.01; (d) .86;

(e) .90; (f ) 1.00; (g) 1.10.

The unit used is the potential due to a pound of mass concentrated at a point
and attracting a second pound of mass concentrated at a point, the two points
being a foot apart.

10. A slightly different problem calling for development in terms of Zonal
Harmonics is the following:

Required the permanent temperatures within a solid sphere of radius 1, one
half of the surface being kept at the constant temperature zero, and the other
half at the constant temperature unity.

Let us take the diameter perpendicular to the plane separating the unequally
heated surfaces as our axis and let us use spherical coördinates. As in the last
problem, we must solve the equation

rD2
r(ru) +

1
sin θ

Dθ(sin θDθu) +
1

sin2 θ
D2
φu = 0 [XIII] Art. 1

which as before reduces to

rD2
r(ru) +

1
sin θ

Dθ(sin θDθu) = 0 (1)

from the consideration that the temperatures must be independent of φ.
Our equation of condition is

u = 1 from θ = 0 to θ =
π

2
and u = 0 from θ =

π

2
to θ = π, (2)
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when r = 1.
As we have seen u = rmPm(cos θ) is a particular solution of (1), m being

any positive whole number, and

u = A0r
0P0(cos θ) +A1rP1(cos θ) +A2r

2P2(cos θ) +A3r
3P3(cos θ) + · · · (3)

where A0, A1, A2, A3 · · · are undetermined constants, is a solution of (1).
When r = 1 (3) reduces to

u = A0P0(cos θ) +A1P1(cos θ) +A2P2(cos θ) +A3P3(cos θ) + · · · (4)

If then we can develop our function of θ which enters into equation (2) in a
series of the form (4), we have only to take the coefficients of that series as the
values of A0, A1, A2, &c., in (3) and we shall have our required solution.

11. As a last example we shall take the problem of the vibration of
a stretched circular membrane fastened at the circumference, that is, of an
ordinary drumhead. We shall suppose the membrane initially distorted into
any given form which has circular symmetry7 about an axis through the centre
perpendicular to the plane of the boundary, and then allowed to vibrate.

Here we have to solve

D2
t z = c2

(
D2
rz +

1
r
Drz +

1
r2
D2
φz

)
[XI] Art. 1

subject to the conditions

z = f(r) when t = 0 (1)
Dtz = 0 “ t = 0 (2)
z = 0 “ r = a. (3)

From the symmetry of the supposed initial distortion z must be independent
of φ, therefore [XI] reduces to

D2
t z = c2

(
D2
rz +

1
r
Drz

)
(4)

and this is the equation for which we wish to find a particular solution.
We shall employ a device not unlike that used in Art. 9.
Assume8 z = R.T where R is a function of r alone and T is a function of t

alone. Substitute this value of z in (4) and we get

RD2
tT = c2T

(
D2
rR+

1
r
DrR

)
7A function of the coördinates of a point has circular symmetry about an axis when its

value is not affected by rotating the point through any angle about the axis. A surface has
circular symmetry about an axis when it is a surface of revolution about the axis.

8See note on page 5.
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or
1
c2T

d2T

dt2
=

1
R

(
d2R

dr2
+

1
r

dR

dr

)
. (5)

The second member of (5) does not involve t, therefore its equal the first member
must be independent of t. The first member of (5) does not involve r, and
consequently since it contains neither t nor r, it must be constant. Let it equal
−µ2, where µ of course is an undetermined constant.

Then (5) breaks up into the two differential equations

d2T

dt2
+ µ2c2T = 0 (6)

d2R

dr2
+

1
r

dR

dr
+ µ2R = 0. (7)

(6) can be solved by familiar methods, and we get T = cosµct and T = sinµct
as simple particular solutions (v. Int. Cal. p. 319, § 21).

To solve (7) is not so easy. We shall first simplify it by a change of indepen-
dent variable. Let r =

x

µ
. (7) becomes

d2R

dx2
+

1
x

dR

dx
+R = 0. (8)

Assume, as in Art. 9, that R can be expressed in terms of whole powers of
x. Let R =

∑
anx

n and substitute in (8). We get∑
[n(n− 1)anxn−2 + nanx

n−2 + anx
n] = 0,

an equation which must be true no matter what the value of x. The coefficient
of any given power of x, as xk−2, must, then, vanish, and

k(k − 1)ak + kak + ak−2 = 0

or k2ak + ak−2 = 0

whence we obtain ak−2 = − k2ak (9)

as the only relation that need be satisfied by the coefficients in order that R =∑
akx

k shall be a solution of (8).

If k = 0, ak−2 = 0, ak−4 = 0, &c.

We can then begin with k = 0 as our lowest subscript.

From (9) ak = −ak−2

k2
.

Then a2 = −a0

22

a4 =
a0

22.42

a6 = − a0

22.42.62
, &c.

Hence R = a0

[
1− x2

22
+

x4

22.42
− x6

22.42.62
+ · · ·

]
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where a0 may be taken at pleasure, is a solution of (8), provided the series is
convergent.

Take a0 = 1, and then R = J0(x) where

J0(x) = 1− x2

22
+

x4

22.42
− x6

22.42.62
+

x8

22.42.62.82
− · · · (10)

is a solution of (8).
J0(x) is easily shown to be convergent for all values real or imaginary of x,

since the series made up of the moduli of the terms of J0(x) (v. Int. Cal. Art. 30)

1 +
r2

22
+

r4

22.42
+

r6

22.42.62
+ · · · ,

where r is the modulus of x, is convergent for all values of r. For the ratio of

the n + 1st term of this series to the nth term is
r2

4n2
and approaches zero as

its limit as n is indefinitely increased, no matter what the value of r. Therefore
J0(x) is absolutely convergent.

J0(x) is a new and important form. It is called a Bessel’s Function of the
zeroth order, or a Cylindrical Harmonic.

Equation (8) was obtained from (7) by the substitution of x = µr, therefore

R = J0(µr) = 1− (µr)2

22
+

(µr)4

22.42
− (µr)6

22.42.62
+ · · ·

is a solution of (7), no matter what the value of µ, and z = J0(µr) cosµct or
z = J0(µr) sinµct is a solution of (4).

z = J0(µr) cosµct satisfies condition (2) whatever the value of µ. In order
that it should also satisfy condition (3) µ must be so taken that

J0(µa) = 0; (11)

that is, µ must be a root of (11) regarded as an equation in µ.
It can be shown that J0(x) = 0 has an infinite number of real positive roots,

any one of which can be obtained to any required degree of approximation
without serious difficulty. Let x1, x2, x3, · · · be these roots. Then if

x1

a
= µ1,

x2

a
= µ2,

x3

a
= µ3, &c.

z = A1J0(µ1r) cosµ1ct+A2J0(µ2r) cosµ2ct+A3J0(µ3r) cosµ3ct+ · · · , (12)

where A1, A2, A3, &c., are any constants, is a solution of (4) which satisfies
conditions (2) and (3).

When t = 0 (12) reduces to

z = A1J0(µ1r) +A2J0(µ2r) +A3J0(µ3r) + · · · . (13)

If then f(r) can be expressed as a series of the form just given, the solution of
our problem can be obtained by substituting the coefficients of that series for
A1, A2, A3, &c., in (12).
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Example.

The temperature of a long cylinder is at first unity throughout. The convex
surface is then kept at the constant temperature zero. Show that the tempera-
ture of any point in the cylinder at the expiration of the time t is

u = A1e
−a2µ2

1tJ0(µ1r) +A2e
−a2µ2

2tJ0(µ2r) +A3e
−a2µ2

3tJ0(µ3r) + · · ·

where µ1, µ2, &c., are the roots of J0(µc) = 0, and where

1 = A1J0(µ1r) +A2J0(µ2r) +A3J0(µ3r) + · · · ,

c being the radius of the cylinder.

12. Each of the five problems which we have taken up forces upon us the
consideration of the development of a given function in terms of some normal
form, and in two of them the normal form suggested is an unfamiliar function.
It is clear, then, that a complete treatment of our subject will require the inves-
tigation of the properties and relations of certain new and important functions,
as well as the consideration of methods of developing in terms of them.

13. In each of the problems just taken up we have to deal with a homo-
geneous linear partial differential equation involving two independent variables,
and we are content if we can obtain particular solutions. In each case the as-
sumption made in the last problem, that there exists a solution of the equation
in which the dependent variable is the product of two factors each of which in-
volves but one of the independent variables, will reduce the question to solving
two ordinary differential equations which can be treated separately.

If these equations are familiar ones their solutions can be written down at
once; if unfamiliar, the device used in problems 3 and 5 is often serviceable,
namely, that of assuming that the dependent variable can be expressed as a
sum or series of terms involving whole powers of the independent variable, and
then determining the coefficients.

Let us consider again the equations used in the first, second and third prob-
lems.

(a) D2
xu+D2

yu = 0 (1)

Assume u = X.Y where X involves x but not y, and Y involves y but not x.

Substitute in (1), Y D2
xX +XD2

yY = 0,

or, since we are now dealing with functions of a single variable,

1
X

d2X

dx2
+

1
Y

d2Y

dy2
= 0,

or
1
Y

d2Y

dy2
= − 1

X

d2X

dx2
. (2)
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Since the first member of (2) does not contain x, and the second member
does not contain y, and the two members must be identically equal, neither of
them can contain either x or y, and each must be equal to a constant, say α2.

Then
d2Y

dy2
− α2Y = 0 (3)

and
d2X

dx2
+ α2X = 0; (4)

and if (3) and (4) can be solved, we can solve (1). They have for their complete
solutions

Y = Aeαy +Be−αy

and X = C sinαx+D cosαx. (v. Int. Cal. p. 319, § 21.)

Hence Y = eαy and Y = e−αy are particular solutions of (3), X = sinαx and
X = cosαx are particular solutions of (1), and consequently

u = eαy sinαx, u = eαy cosαx, u = e−αy sinαx, and u = e−αy cosαx

are particular solutions of (1). These agree with the results of Art. 7.

(b) D2
t y = a2D2

xy (1)

Assume y = T.X where T is a function of t only and X a function of x only;
substitute in (1) and divide by a2TX. We get

1
a2T

d2T

dt2
=

1
X

d2X

dx2
; (2)

hence as in the last case
1
X

d2X

dx2
is a constant; call it −α2, and (2) breaks up

into

d2X

dx2
+ α2X = 0 (3)

d2T

dt2
+ α2a2T = 0. (4)

The complete solutions of (3) and (4) are

X = A sinαx+B cosαx
and T = C sinαat+D cosαat, (v. Int. Cal. p. 319, § 21).

y = sinαx cosαat, y = sinαx sinαat, y = cosαx cosαat, y = cosαx sinαat

are particular solutions of (1), and agree with the results of Art. 8.

(c) rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0. (1)
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Assume V = R.Θ where R involves r alone, and Θ involves θ alone; substi-
tute in (1), divide by R.Θ, and transpose; we get

r

R

d2(rR)
dr2

= − 1
Θ sin θ

d
(

sin θ
dΘ
dθ

)
dθ

. (2)

Since by the reasoning used in (a) and (b) each member of (2) must be a
constant, say α2, we have

r
d2(rR)
dr2

= α2R (3)

and
1

sin θ

d
(

sin θ
dΘ
dθ

)
dθ

+ α2Θ = 0. (4)

(3) can be expanded into

r2 d
2R

dr2
+ 2r

dR

dr
− α2R = 0. (5)

(5) can be solved (v. Int. Cal. p. 321, § 23), and has for its complete solution

R = Arm +Brn,

where m = − 1
2 +

√
α2 + 1

4 and n = − 1
2 −

√
α2 + 1

4 .

Hence n = −m−1, and α2 may be written m(m+1), m being wholly arbitrary;
and

R = Arm +Br−m−1.

R = rm, and R =
1

rm+1

are, then, particular solutions of

r2 d
2R

dr2
+ 2r

dR

dr
−m(m+ 1)R = 0. (6)

With the new value of α2 (4) becomes

1
sin θ

d
(

sin θ
dΘ
dθ

)
dθ

+m(m+ 1)Θ = 0. (7)

which has been treated in Art. 9 for the case where m is a positive integer, and
the particular solution Θ = Pm(cos θ) has been obtained.

Hence V = rmPm(cos θ)

and V =
1

rm+1
Pm(cos θ),

m being a positive integer, are particular solutions of (1). The first of these was
obtained in Art. 9, but the second is new and exceedingly important.
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14. The method of obtaining a particular solution of an ordinary linear
differential equation, which we have used in Articles 9 and 11, is of very extensive
application, and often leads to the general solution of the equation in question.

As a very simple example, let us take the equation Art. 13 (a) (4), which we
shall write

d2z

dx2
+ α2z = 0. (1)

Assume that there is a solution which can be expressed in terms of powers
of x; that is, let z =

∑
anx

n, where the coefficients are to be determined.
Substitute this value for z in (1) and we get∑

[n(n− 1)anxn−2 + α2anx
n] = 0.

Since this equation must be true from its form, without reference to the value
of x, that is, since it must be an identical equation, the coefficient of each power
of x must equal zero, and we have

(n+ 1)(n+ 2)an+2 + α2an = 0;

whence an = − (n+ 1)(n+ 2)
α2

an+2

is the only relation that need hold between the coefficients in order that z =∑
anx

n should be a solution of (1).
If n+ 2 = 0 or n+ 1 = 0, an will be zero and an−2, an−4, &c., will be zero.

In the first case the series will begin with a0, in the second with a1.

an+2 = − α2

(n+ 1)(n+ 2)
an.

If we begin with a0 we have

a2 = −α
2

2!
a0, a4 =

α4

4!
a0, a6 = −α

6

6!
a0, &c., · · ·

and z = a0

(
1− α2x2

2!
+
α4x4

4!
− α6x6

6!
+ · · ·

)
(2)

or z = a0 cosαx (3)

is a particular solution of (1).
If we begin with a1 we have

a3 = −α
2

3!
a1, a5 =

α4

5!
a1, a7 = −α

6

7!
a1, &c., · · ·

and z = a1

(
x− α2x3

3!
+
α4x5

5!
− α6x7

7!
+ · · ·

)
(4)
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is a solution of (1); a1 can be taken at pleasure. Let a1 = α, (4) becomes

z = αx− α3x3

3!
+
α5x5

5!
− α7x7

7!
+ · · ·

or z = sinαx

which, then, is a particular solution of (1).

z = A sinαx+B cosαx (5)

is, then, a solution of (1), and since it contains two arbitrary constants it is the
general solution.

15. As another example we will take the equation

x2 d
2z

dx2
+ 2x

dz

dx
−m(m+ 1)z = 0, (1)

which is in effect equation (6), Art. 13 (c), and let m be a positive integer.
Assume z =

∑
anx

n and substitute in (1). We get∑
[n(n+ 1)−m(m+ 1)]anxn = 0.

This is an identical equation, therefore

[n(n+ 1)−m(m+ 1)]an = 0.

Hence an = 0 for all values of n except those which make

n(n+ 1)−m(m+ 1) = 0,

that is, for all values of n except n = m and n = −m− 1. Then

z = Axm +Bx−m−1 (2)

is the general solution of (1) and

z = xm and z =
1

xm+1

are particular solutions. If m is not a positive integer this method will not lead
to a result, and we are driven back to that employed in Art. 13 (c).

16. Let us now take the equation

d

dx

[
(1− x2)

dz

dx

]
+m(m+ 1)z = 0 (1)

which is in effect equation (4), Art. 9, and is known as Legendre’s Equation. (1)
may be written

(1− x2)
d2z

dx2
− 2x

dz

dx
+m(m+ 1)z = 0. (2)
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Assume z =
∑
anx

n and substitute in (2). We get∑
{n(n− 1)anxn−2 + [m(m+ 1)− n(n+ 1)]anxn} = 0.

Hence (n+ 1)(n+ 2)an+2 + [m(m+ 1)− n(n+ 1)]an = 0,

or an = − (n+ 1)(n+ 2)
m(m+ 1)− n(n+ 1)

an+2. (3)

If an = 0, then an−2 = 0, an−4 = 0, &c.; but an = 0 if n = −2 or n = −1. For
the first case we have the sequence of coefficients

a2 = −m(m+ 1)
2!

a0

a4 =
m(m− 2)(m+ 1)(m+ 3)

4!
a0

a6 = −m(m− 2)(m− 4)(m+ 1)(m+ 3)(m+ 5)
6!

a0, &c.

Let us take a0, which is arbitrary, as 1. Then z = pm(x) where

pm(x) =
[
1− m(m+ 1)

2!
x2 +

m(m− 2)(m+ 1)(m+ 3)
4!

x4 − · · ·
]

(4)

is a solution of Legendre’s Equation if pm(x) is a finite sum or a convergent
series.

For the second case we have the sequence of coefficients

a3 = − (m− 1)(m+ 2)
3!

a1

a5 =
(m− 1)(m− 3)(m+ 2)(m+ 4)

5!
a1

a7 = − (m− 1)(m− 3)(m− 5)(m+ 2)(m+ 4)(m+ 6)
7!

a1, &c.

Let us take a1, which is arbitrary, as 1. Then z = qm(x) where

qm(x) =
[
x− (m− 1)(m+ 2)

3!
x3 +

(m− 1)(m− 3)(m+ 2)(m+ 4)
5!

x5 − · · ·
]
(5)

is a solution of Legendre’s Equation if qm(x) is a finite sum or a convergent
series.

If m is a positive even whole number, pm(x) will terminate with the term
containing xm, and is easily seen to be identical with

(−1)
m
2

2m
[
Γ
(m

2
+ 1
)]2

Γ(m+ 1)
Pm(x). [v. Art. 9 (9)]
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For all other values of m, pm(x) is a series.
The ratio of the (n+1)st term of pm(x) to the nth, when m is not a positive

even integer, is
(2n− 2−m)(2n− 1 +m)

(2n− 1)(2n)
x2.

Its limiting value, as n is increased, is x2, and the series is therefore convergent
if −1 < x < 1. It is divergent for all other values of x.

If m is a positive odd whole number qm(x) will terminate with the term
containing xm, and is easily seen to be identical with

(−1)
m−1

2

2m−1
[
Γ
(m+ 1

2

)]2
Γ(m+ 1)

Pm(x).

For all other values of m, qm(x) is a series, and can be shown to be convergent
if −1 < x < 1, and divergent for all other values of x.

z = Apm(x) +Bqm(x) (6)

is the general solution of Legendre’s Equation if −1 < x < 1, no matter what
the value of m. From Art. 13 (c) it follows that

V = rmpm(cos θ)

V =
1

rm+1
pm(cos θ)

V = rmqm(cos θ)

V =
1

rm+1
qm(cos θ)


(7)

are particular solutions of

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0,

no matter what the value of m, provided cos θ is neither one nor minus one.
In the work we shall have to do with Laplace’s and Legendre’s Equations, it

is generally possible to restrict m to being a positive integer, and hereafter we
shall usually confine our attention to that case.

With this understanding let us return to (3), which may be rewritten

an+2 = − (m− n)(m+ n+ 1)
(n+ 1)(n+ 2)

an.

If an+2 = 0, then an+4 = 0, an+6 = 0, &c.;

but an+2 = 0 if n = m, or n = −m− 1.
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If in (3) we begin with n = m − 2, we get the sequence of coefficients already
obtained in Art. 9, and we have z = Pm(x), where

Pm(x) =
(2m− 1)(2m− 3) · · · 1

m!

[
xm − m(m− 1)

2(2m− 1)
xm−2

+
m(m− 1)(m− 2)(m− 3)

2.4.(2m− 1)(2m− 3)
xm−4

− m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)
2.4.6.(2m− 1)(2m− 3)(2m− 5)

xm−6 + · · ·
]
, (8)

as a particular solution of Legendre’s Equation.
If, however, we begin with n = −m− 3, we have

a−m−3 =
(m+ 1)(m+ 2)

2(2m+ 3)
a−m−1

a−m−5 =
(m+ 1)(m+ 2)(m+ 3)(m+ 4)

2.4.(2m+ 3)(2m+ 5)
a−m−1

a−m−7 =
(m+ 1)(m+ 2)(m+ 3)(m+ 4)(m+ 5)(m+ 6)

2.4.6.(2m+ 3)(2m+ 5)(2m+ 7)
a−m−1, &c.

a−m−1 may be taken at pleasure, and is usually taken as
m!

1.3.5. · · · (2m+ 1)
,

and z = Qm(x) where

Qm(x) =
m!

(2m+ 1)(2m− 1) · · · 1

[
1

xm+1
+

(m+ 1)(m+ 2)
2.(2m+ 3)

1
xm+3

+
(m+ 1)(m+ 2)(m+ 3)(m+ 4)

2.4.(2m+ 3)(2m+ 5)
1

xm+5
+ · · ·

]
(9)

is a second particular solution of Legendre’s Equation, provided the series is
convergent. Qm(x) is called a Surface Zonal Harmonic of the second kind. It is
easily seen to be convergent if x < −1 or x > 1, and divergent if −1 < x < 1.

Hence if m is a positive integer,

z = APm(x) +BQm(x) (10)

is the general solution of Legendre’s Equation if x < −1 or x > 1.
We have seen that for −1 < x < 1

Pm(x) = (−1)
m
2

Γ(m+ 1)

2m
[
Γ
(m

2
+ 1
)]2 pm(x) (11)

if m is an even integer, and

Pm(x) = (−1)
m−1

2
Γ(m+ 1)

2m−1
[
Γ
(m+ 1

2

)]2 qm(x) (12)
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if m is an odd integer.
If now we define Qm(x) as follows when −1 < x < 1

Qm(x) = (−1)
m+1

2

2m−1
[
Γ
(m+ 1

2

)]2
Γ(m+ 1)

pm(x) (13)

if m is an odd integer, and

Qm(x) = (−1)
m
2

2m
[
Γ
(m

2
+ 1
)]2

Γ(m+ 1)
qm(x) (14)

if m is an even integer, then (10) will be the general solution of Legendre’s
Equation if m is a positive integer when −1 < x < 1, as well as when x < −1
or x > 1.

17. Let us last consider the equation

d2z

dx2
+

1
x

dz

dx
+
(

1− m2

x2

)
z = 0 (1)

which is known as Bessel’s Equation, and which reduces to (8) Art. 11, that is,
to

d2z

dx2
+

1
x

dz

dx
+ z = 0

when m = 0;9 (1) can be simplified by a change of the dependent variable. Let
z = xmv and we get

d2v

dx2
+

2m+ 1
x

dv

dx
+ v = 0 (2)

to determine v.
Assume v =

∑
anx

n, and substitute in (2). We get∑
[n(2m+ n)anxn−2 + anx

n] = 0;

whence an−2 = −n(2m+ n)an.

If we begin with n = 0, then an−2 = 0, an−4 = 0, &c., and we have the set of
values

a2 = − a0

2(2m+ 2)
= − a0

22(m+ 1)

a4 =
a0

2.4(2m+ 2)(2m+ 4)
=

a0

24.2!(m+ 1)(m+ 2)

9This equation was first studied by Fourier in considering the cooling of a cylinder. We
shall designate it as “Fourier’s Equation.”
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a6 = − a0

2.4.6(2m+ 2)(2m+ 4)(2m+ 6)
= − a0

26.3!(m+ 1)(m+ 2)(m+ 3)
;

whence z = a0x
m

[
1 − x2

22(m+ 1)
+

x4

24.2!(m+ 1)(m+ 2)

− x6

26.3!(m+ 1)(m+ 2)(m+ 3)
+ · · ·

]
(3)

is a solution of Bessel’s Equation. a0 is usually taken as
1

2mm!
if m is a positive

integer, or as
1

2mΓ(m+ 1)
if m is unrestricted in value, and the second member

of (3) is represented by Jm(x) and is called a Bessel’s Function of the mth order,
or a Cylindrical Harmonic of the mth order.

If m = 0, Jm(x) becomes J0(x) and is the value of z obtained in Art. 11 as
the solution of equation (8) of that article.

If in equation (1) we substitute x−mv in place of xmv for z, we get in place
of (2) the equation

d2v

dx2
+

1− 2m
x

dv

dx
+ v = 0

and in place of (3)

z = a0x
−m
[
1 − x2

22(1−m)
+

x4

24.2!(1−m)(2−m)

− x6

26.3!(1−m)(2−m)(3−m)
+ · · ·

]
(4)

If a0 is taken equal to
1

2−mΓ(1−m)
the second member of (4) is the same

function of −m and x that Jm(x) is of +m and x and may be written J−m(x).

Therefore z = AJm(x) +BJ−m(x) (5)

is the general solution of (1) unless Jm(x) and J−m(x) should prove not to be
independent.

It is easily seen that when m = 0, J−m(x) and Jm(x) become identical and
(5) reduces to

z = (A+B)J0(x)

and contains but a single arbitrary constant and is not the general solution of
Fourier’s Equation (8) Art. (11).

It can be shown that J−m(x) = (−1)mJm(x) whenever m is an integer, and
consequently that the solution (5) is general only when m if real is fractional or
incommensurable.
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The general solution for the important case where m = 0 is, however, easily
obtained. Let F (m,x) be the value which the second member of (3) assumes
when a0 = 1; then the value which the second member of (4) assumes when
a0 = 1 will be F (−m,x), and it has been shown that z = F (m,x) and z =
F (−m,x) are solutions of Bessel’s Equation; z = F (m,x)− F (−m,x) is, then,
a solution, as is also

z =
F (m,x)− F (−m,x)

2m
, (6)

but the limiting value which
F (m,x)− F (−m,x)

2m
approaches as m approaches

zero is [DmF (m,x)]m=0 and consequently

z = [DmF (m,x)]m=0 (7)

is a solution of the equation

d2z

dx2
+

1
x

dz

dx
+ z = 0, (8)

and the general solution of (8) is

z = AJ0(x) +B[DmF (m,x)]m=0.

F (m,x) = xm
[
1− x2

22(m+ 1)
+

x4

24.2!(m+ 1)(m+ 2)

− x6

26.3!(m+ 1)(m+ 2)(m+ 3)
+ · · ·

]
DmF (m,x) = xm log x

[
1− x2

22(m+ 1)
+

x4

24.2!(m+ 1)(m+ 2)
− · · ·

]
+xmDm

[
1− x2

22(m+ 1)
+

x4

24.2!(m+ 1)(m+ 2)
+ · · ·

]
.

The general term of the last parenthesis can be written

(−1)k
x2k

22k.k!(m+ 1)(m+ 2) · · · (m+ k)
,

and its partial derivative with respect to m is

(−1)k
x2k

22k.k!
Dm

1
(m+ 1)(m+ 2) · · · (m+ k)

.

log
1

(m+ 1)(m+ 2) · · · (m+ k)
= −[ log(m+ 1) + log(m+ 2) + · · ·

+ log(m+ k)].
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Take the Dm of both members and we have

Dm
1

(m+ 1)(m+ 2) · · · (m+ k)

= − 1
(m+ 1)(m+ 2) · · · (m+ k)

[
1

m+ 1
+

1
m+ 2

+ · · · 1
m+ k

]
.

Dm

[
1 − x2

22(m+ 1)
+

x4

24.2!(m+ 1)(m+ 2)
− x6

26.3!(m+ 1)(m+ 2)(m+ 3)

+ · · ·
]

=
x2

22

1
(m+ 1)2

− x4

24.2!
1

(m+ 1)(m+ 2)

[
1

m+ 1
+

1
m+ 2

]
+

x6

26.3!
1

(m+ 1)(m+ 2)(m+ 3)

[
1

m+ 1
+

1
m+ 2

+
1

m+ 3

]
+ · · ·

and we have

[DmF (m,x)]m=0 = J0(x) log x+
x2

22(1!)2

1
1
− x4

24(2!)2

(
1
1

+
1
2

)
+

x6

26(3!)2

(
1
1

+
1
2

+
1
3

)
− x8

28(4!)2

(
1
1

+
1
2

+
1
3

+
1
4

)
+ · · · ;

and z = AJ0(x) +BK0(x), (9)

where K0(x) = J0(x) log x+
x2

22
− x4

24(2!)2

(
1
1

+
1
2

)
+

x6

26(3!)2

(
1
1

+
1
2

+
1
3

)
− x8

28(4!)2

(
1
1

+
1
2

+
1
3

+
1
4

)
+ · · · (10)

is the general solution of Fourier’s Equation (8).
K0(x) is known as a Bessel’s Function of the Second Kind.

18. It is worth while to confirm the results of the last few articles by
getting the general solutions of the equations in question by a different and
familiar method.

The general solution of any ordinary linear differential equation of the second
order can be obtained when a particular solution of the equation has been found
[v. Int. Cal. p. 321, § 24 (a)].

The most general form of a homogeneous ordinary linear differential equation
of the second order is

d2y

dx2
+ P

dy

dx
+Qy = 0 (1)

where P and Q are functions of x. Suppose that

y = v (2)

is a particular solution of (1). Substitute y = vz in (1) and we get

v
d2z

dx2
+
(

2
dv

dx
+ Pv

)
dz

dx
= 0. (3)
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Call
dz

dx
= z′. Then (3) becomes

v
dz′

dx
+
(

2
dv

dx
+ Pv

)
z′ = 0, (4)

a differential equation of the first order in which the variables can be separated.
Multiply by dx and divide by vz′ and (4) reduces to

dz′

z′
+ 2

dv

v
+ Pdx = 0.

Integrate and we have

log z′ + log v2 +
w
Pdx = C

or z′v2 = eC−
r
Pdx = Be−

r
Pdx,

z′ =
dz

dx
= B

e−
r
Pdx

v2
,

z = A+B
w e−

r
Pdx

v2
dx;

and y = v

(
A+B

w e−
r
Pdx

v2
dx

)
(5)

is the general solution of (1), the only arbitrary constants in the second member
of (5) being those explicitly written, namely, A and B.

(a) Apply this formula to (1) Art. 14,

d2z

dx2
+ α2z = 0; (1)

given: z = cosαx, as a particular solution. Substituting in (5) we have since
P = 0

z = cosαx
(
A+B

w dx

cos2 αx

)
= cosαx

(
A+

B

α
tanαx

)
= A cosαx+B1 sinαx, (2)

as the general solution of (1), and this agrees perfectly with (5) Art. 14.

(b) Take equation (1) Art. 15.

x2 d
2z

dx2
+ 2x

dz

dx
−m(m+ 1)z = 0; (1)

given: z = xm, as a particular solution.
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Here P =
2
x

,
w
Pdx = 2 log x = log x2, and e−

r
Pdx =

1
x2

. Hence by (5)

z = xm
(
A+B

w dx

x2m+2

)
= xm

(
A+

B

−2m− 1
1

x2m+1

)
,

that is z = Axm +
B1

xm+1
(2)

is the general solution of (1), and agrees with (2) Art. 15.

(c) Take Legendre’s Equation, (2) Art. 16.

(1− x2)
d2z

dx2
− 2x

dz

dx
+m(m+ 1)z = 0; (1)

given: z = Pm(x), as a particular solution.

Here P =
−2x

1− x2
,
w
Pdx = log(1− x2), and e−

r
Pdx =

1
1− x2

.

Hence by (5) z = Pm(x)
(
A+B

w dx

(1− x2)[Pm(x)]2

)
(2)

is the general solution of (1) and must agree with (10) Art. 16, if m is an integer,
and therefore

Qm(x) = CPm(x)
w dx

(1− x2)[Pm(x)]2
(3)

where C is as yet undetermined, and no constant term is to be understood with
the integral in the second member.

(d) Take Bessel’s Equation, (1) Art. 17.

d2z

dx2
+

1
x

dz

dx
+
(

1− m2

x2

)
z = 0; (1)

given: z = Jm(x), as a particular solution.

Here P =
1
x

,
w
Pdx = log x, and e−

r
Pdx =

1
x

. Hence by (5)

z = Jm(x)
(
A+B

w dx

x[Jm(x)]2

)
(2)

is the general solution of Bessel’s Equation.
If m = 0 (2) becomes

z = J0(x)
(
A+B

w dx

x[J0(x)]2

)
(3)

and must agree with (9) Art. 17. Therefore

K0(x) = CJ0(x)
w dx

x[J0(x)]2
, (4)
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where C is at present undetermined, and no constant term is to be taken with
the integral.

The first considerable subject suggested by the problems which we have
taken up in this introductory chapter is that of development in Trigonometric
Series (v. Arts. 7 and 8).
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CHAPTER II.

DEVELOPMENT IN TRIGONOMETRIC SERIES.

19. We have seen in Chapter I. that it is sometimes important to be able
to express a given function of a variable x, in terms of the sines or of the cosines
of multiples of x. The problem in its general form was first solved by Fourier in
his “Analytic Theory of Heat” (1822), and its solution plays a very important
part in most branches of modern Physics. Series involving only sines and cosines
of whole multiples of x, that is series of the form

b0 + b1 cosx+ b2 cos 2x+ · · ·+ a1 sinx+ a2 sin 2x+ · · ·

are generally known as Fourier’s series.
Let us endeavor to develop a given function of x in terms of sinx, sin 2x,

sin 3x, &c., in such a way that the function and the series shall be equal for all
values of x between x = 0 and x = π.

To fix our ideas let us suppose that we have a curve,

y = f(x),

given, and that we wish to form the equation,

y = a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · · ,

of a curve which shall coincide with so much of the given curve as lies between
the points corresponding to x = 0 and x = π. It is clear that in the equation

y = a1 sinx (1)

a1 may be determined so that the curve represented shall pass through any
given point. For if we substitute in (1) the coördinates of the point in question
we shall have an equation of the first degree in which a1 is the only unknown
quantity and which will therefore give us one and only one value for a1.

In like manner the curve

y = a1 sinx+ a2 sin 2x

may be made to pass through any two arbitrarily chosen points whose abscissas
lie between 0 and π provided that the abscissas are not equal; and

y = a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · ·+ an sinnx

may be made to pass through any n arbitrarily chosen points whose abscissas
lie between 0 and π provided as before that their abscissas are all different.

If, then, the given function f(x) is of such a character that for each value
of x between x = 0 and x = π it has one and only one value, and if between
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x = 0 and x = π it is finite and continuous, or if discontinuous has only finite
discontinuities (v. Int. Cal. Art. 83, p. 78), the coefficients in

y = a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · ·+ an sinnx (2)

can be determined so that the curve represented by (2) will pass through any n
arbitrarily chosen points of the curve

y = f(x) (3)

whose abscissas lie between 0 and π and are all different, and these coefficients
will have but one set of values.

For the sake of simplicity suppose that the n points are so chosen that their
projections on the axis of X are equidistant.

Call
π

n+ 1
= ∆x; then the coördinates of the n points will be [∆x, f(∆x)],

[2∆x, f(2∆x)], [3∆x, f(3∆x)], · · · [n∆x, f(n∆x)]. Substitute them in (2) and
we have

f(∆x) = a1 sin ∆x+ a2 sin 2∆x+ a3 sin 3∆x+ · · ·+ an sinn∆x
f(2∆x) = a1 sin 2∆x+ a2 sin 4∆x+ a3 sin 6∆x+ · · ·+ an sin 2n∆x
f(3∆x) = a1 sin 3∆x+ a2 sin 6∆x+ a3 sin 9∆x+ · · ·+ an sin 3n∆x

...
...

...
...

...

f(n∆x) = a1 sinn∆x+ a2 sin 2n∆x+ a3 sin 3n∆x+ · · ·+ an sinn2∆x,


(4)

n equations of the first degree to determine the n coefficients a1, a2, a3, · · · an.
Not only can equations (4) be solved in theory, but they can be actually

solved in any given case by a very simple and ingenious method due to Lagrange.
Let us take as an example the simple problem to determine the coefficients

a1, a2, a3, a4, and a5, so that

y = a1 sinx+ a2 sin 2x+ a3 sin 3x+ a4 sin 4x+ a5 sin 5x (5)

shall pass through the five points of the line

y = x

which have the abscissas
π

6
,

2π
6

,
3π
6

,
4π
6

, and
5π
6

,
π

6
here being ∆x.

We must now solve the equations

π

6
= a1 sin

π

6
+ a2 sin

2π
6

+ a3 sin
3π
6

+ a4 sin
4π
6

+ a5 sin
5π
6

2π
6

= a1 sin
2π
6

+ a2 sin
4π
6

+ a3 sin
6π
6

+ a4 sin
8π
6

+ a5 sin
10π
6

3π
6

= a1 sin
3π
6

+ a2 sin
6π
6

+ a3 sin
9π
6

+ a4 sin
12π
6

+ a5 sin
15π
6

4π
6

= a1 sin
4π
6

+ a2 sin
8π
6

+ a3 sin
12π
6

+ a4 sin
16π
6

+ a5 sin
20π
6

5π
6

= a1 sin
5π
6

+ a2 sin
10π
6

+ a3 sin
15π
6

+ a4 sin
20π
6

+ a5 sin
25π
6
.


(6)
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Multiply the first equation by 2 sin
π

6
, the second by 2 sin

2π
6

, the third by

2 sin
3π
6

, the fourth by 2 sin
4π
6

, the fifth by 2 sin
5π
6

and add the equations.
The coefficient of a2 is

2 sin
π

6
sin

2π
6

+ 2 sin
2π
6

sin
4π
6

+ 2 sin
3π
6

sin
6π
6

+ 2 sin
4π
6

sin
8π
6

+ 2 sin
5π
6

sin
10π
6

;

but 2 sin
π

6
sin

2π
6

= cos
π

6
− cos

3π
6
,&c.

Hence the coefficient of a2 becomes

cos
π

6
+ cos

2π
6

+ cos
3π
6

+ cos
4π
6

+ cos
5π
6

− cos
3π
6
− cos

6π
6
− cos

9π
6
− cos

12π
6
− cos

15π
6

 (7)

and this may be reduced by the aid of an important Trigonometric formula
which we proceed to establish.

20. Lemma.

cos θ + cos 2θ + cos 3θ + · · ·+ cosnθ = −1
2

+
1
2

sin(2n+ 1)
θ

2

sin
θ

2

. (1)

For let S = cos θ + cos 2θ + cos 3θ + · · ·+ cosnθ and multiply by 2 cos θ.

2S cos θ = 2 cos2 θ + 2 cos θ cos 2θ + 2 cos θ cos 3θ + · · ·+ 2 cos θ cosnθ
= 1 + cos θ + cos 2θ + · · ·+ cos(n− 1)θ

+ cos 2θ + cos 3θ + cos 4θ + · · ·+ cos(n+ 1)θ
= 2S + 1 + cos(n+ 1)θ − cos θ − cosnθ. Hence

S = −1
2

+
cosnθ − cos(n+ 1)θ

2(1− cos θ)

or S = −1
2

+
1
2

sin(2n+ 1)
θ

2

sin
θ

2

. Q.E.D.

21. Applying (1) Art. 20 to (7) Art. 19 the coefficient of a2 reduces to

sin
11π
12

2 sin
π

12

−
sin

33π
12

2 sin
3π
12

;
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but
11π
12

= π − π

12
, and

33π
12

= 3π − 3π
12

;

therefore
sin
(
π − π

12

)
2 sin

π

12

−
sin
(

3π − 3π
12

)
2 sin

3π
12

=
1
2
− 1

2
= 0,

and a2 vanishes.
In like manner it may be shown that the coefficients of a3, a4, and a5 vanish.
The coefficient of a1 is

2 sin2 π

6
+ 2 sin2 2π

6
+ 2 sin2 3π

6
+ 2 sin2 4π

6
+ 2 sin2 5π

6

= 1 + 1 + 1 + 1 + 1

− cos
2π
6
− cos

4π
6
− cos

6π
6
− cos

8π
6
− cos

10π
6

= 5 +
1
2
−

sin
11π
6

2 sin
π

6

= 5 1
2 −

sin
(

2π − π

6

)
2 sin

π

6

= 6.

The first member of the final equation is

2π
6

sin
π

6
+ 2

2π
6

sin
2π
6

+ 2
3π
6

sin
3π
6

+ 2
4π
6

sin
4π
6

+ 2
5π
6

sin
5π
6
. Hence

a1 =
2
6

k=5∑
k=1

kπ

6
sin

kπ

6
=
π

6
(2 +

√
3) = 2 approximately.

If we multiply the first equation of (6) Art. 19 by 2 sin
2π
6

, the second by

2 sin
4π
6

, the third by 2 sin
6π
6

, the fourth by 2 sin
8π
6

, the fifth by 2 sin
10π
6

, add
and reduce as before we shall find

a2 =
2
6

k=5∑
k=1

kπ

6
sin

2kπ
6

= −π
6
√

3 = −0.9;

and in like manner we get

a3 =
2
6

k=5∑
k=1

kπ

6
sin

3kπ
6

=
π

6
= 0.5

a4 =
2
6

k=5∑
k=1

kπ

6
sin

4kπ
6

= −π
√

3
18

= −0.3

a5 =
2
6

k=5∑
k=1

kπ

6
sin

5kπ
6

=
π

6
(2−

√
3) = 0.1.
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Therefore

y = 2 sinx− 0.9 sin 2x+ 0.5 sin 3x− 0.3 sin 4x+ 0.1 sin 5x (1)

cuts the curve y = x at the five points whose abscissas are
π

6
,

2π
6

,
3π
6

,
4π
6

, and
5π
6

.

22. The equations (4) Art. 19 can be solved by exactly the same device.
To find any coefficient am multiply the first equation by 2 sinm∆x, the second
by 2 sin 2m∆x, the third by 2 sin 3m∆x, &c. and add.

The coefficient of any other a as ak in the resulting equation will be

2 sin k∆x sinm∆x+ 2 sin 2k∆x sin 2m∆x+ 2 sin 3k∆x sin 3m∆x+ · · ·
+ 2 sinnk∆x sinnm∆x

= cos(m− k)∆x+ cos 2(m− k)∆x+ cos 3(m− k)∆x+ · · ·+ cosn(m− k)∆x
− cos(m+ k)∆x− cos 2(m+ k)∆x− cos 3(m+ k)∆x− · · · − cosn(m+ k)∆x

=
sin

2n+ 1
2

(m− k)∆x

2 sin
(m− k)∆x

2

−
sin

2n+ 1
2

(m+ k)∆x

2 sin
(m+ k)∆x

2

; by (1) Art. 20.

2n+ 1
2

= n+ 1− 1
2

and (n+ 1)∆x = π.

Hence the coefficient of ak may be written

sin
[
(m− k)π − (m− k)∆x

2

]
2 sin

(m− k)∆x
2

−
sin
[
(m+ k)π − (m+ k)∆x

2

]
2 sin

(m+ k)∆x
2

but this is equal to
1
2
− 1

2
or −1

2
+

1
2

according as m− k is odd or even and so
is zero in either case.

The coefficient of am will be

2 sin2m∆x+ 2 sin2 2m∆x+ 2 sin2 3m∆x+ · · ·+ 2 sin2 nm∆x
= 1 + 1 + 1 + · · · + 1
− cos 2m∆x− cos 4m∆x− cos 6m∆x− · · · − cos 2nm∆x

= n+
1
2
− sin(2n+ 1)m∆x

2 sinm∆x
, by (1) Art. 20.

But (2n+ 1)m∆x = 2m(n+ 1)∆x−m∆x = 2mπ −m∆x,

therefore
sin(2n+ 1)m∆x

2 sinm∆x
=

sin(2mπ −m∆x)
2 sinm∆x

= −1
2
,
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and the coefficient of am is n+ 1.
The first member of our final equation will be

2
k=n∑
k=1

f(k∆x) sin km∆x.

Hence

am =
2

n+ 1

k=n∑
k=1

f(k∆x) sin km∆x, (1)

and the curve
y = a1 sinx+ a2 sin 2x+ · · ·+ an sinnx, (2)

where the coefficients are given by (1) will pass through the n points of the
curve y = f(x) whose abscissas are ∆x, 2∆x, 3∆x, · · · n∆x. ∆x being

π

n+ 1
.

It should be noted that since the n equations (4) Art. 19 are all of the first
degree there will exist only one set of values for the n quantities a1, a2, a3, · · ·
an that can satisfy these equations. Consequently the solution which we have
obtained is the only solution possible.

23. The result just obtained obviously holds good no matter how great a
value of n may be taken.

If now we suppose n indefinitely increased the two curves (2) Art. 22 and
y = f(x) will come nearer and nearer to coinciding throughout the whole of
their portions between x = 0 and x = π, and consequently the limiting form
that equation (2) Art. 22 approaches as n is indefinitely increased will represent
a curve absolutely coinciding between the values of x in question with y = f(x).

Let us see what limiting value am approaches as n is indefinitely increased.

am =
2

n+ 1

k=n∑
k=1

f(k∆x) sin km∆x (1) Art. 22.

=
2∆x
π

k=n∑
k=1

f(k∆x) sin km∆x

=
2
π

[
f(∆x) sinm∆x.∆x+ f(2∆x) sin 2m∆x.∆x+ · · ·

+ f(n∆x) sinnm∆x.∆x

]

=
2
π

[
f(∆x) sinm∆x.∆x+ f(2∆x) sin 2m∆x.∆x+ · · ·

+f(π −∆x) sinm(π −∆x).∆x

]

since ∆x =
π

n+ 1
.
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As n is increased indefinitely ∆x approaches zero as a limit. Hence the
limiting value of am as n increases indefinitely is

2
π

limit
∆x
.
=0

[
f(∆x) sinm∆x.∆x+ f(2∆x) sin 2m∆x.∆x+ · · ·

+f(π −∆x) sinm(π −∆x).∆x

]
1

=
2
π

πw

0

f(x) sinmx.dx. [v. Int. Cal. Arts. 80, 81.]

Hence f(x) = a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · · , (2)

where any coefficient am is given by the formula

am =
2
π

πw

0

f(x) sinmx.dx, (3)

is a true development of f(x) for all values of x between x = 0 and x = π
provided that the series (2) is convergent, for it is in that case only that we
can assume that the limiting value of the second member of (2) Art. 22 can be
obtained by adding the limiting values of the several terms.

When x = 0 and when x = π every term in the second member of (2) is
zero, and the second member is zero and will not be equal to f(x) unless f(x)
is itself zero when x = 0 and x = π; but even when f(x) is not zero for x = 0
and x = π the development given above holds good for any value of x between
zero and π no matter how near it may be taken to either of these values.

24. Instead of actually performing the elimination in equations (4) Art. 19
and getting a formula for am in terms of n, and then letting n increase indefi-
nitely, we might have saved labor by the following method.

Return to equations (4) Art. 19 and multiply the first by ∆x sinm∆x, the
second by ∆x sin 2m∆x, and so on, that is multiply each equation by ∆x times
the coefficient of am in that equation, and then add the equations.

We get as the coefficient of ak

sin k∆x sinm∆x.∆x+ sin 2k∆x sin 2m∆x.∆x+ · · ·+ sinnk∆x sinnm∆x.∆x.

Let us find its limiting value as n is indefinitely increased. It may be written,
since (n+ 1)∆x = π,

limit
∆x
.
=0

[
sin k∆x sinm∆x.∆x+ sin 2k∆x sin 2m∆x.∆x+ · · ·

+ sink(π −∆x) sinm(π −∆x).∆x

]

=
πw

0

sin kx sinmx.dx;

1We shall use the sign
.
= for approaches. ∆x

.
= 0 is read ∆x approaches zero.
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but
πw

0

sin kx sinmx.dx = 1
2

πw

0

[cos(m− k)x− cos(m+ k)x]dx

= 0 if m and k are not equal.

The coefficient of am is

∆x(sin2m∆x+ sin2 2m∆x+ sin2 3m∆x+ · · ·+ sin2 nm∆x).

Its limiting value

limit
∆x
.
=0

[
sin2m∆x.∆x+ sin2 2m∆x.∆x+ · · ·+ sin2m(π −∆x)∆x

]
=

πw

0

sin2mx.dx =
π

2
.

The first member is

f(∆x) sinm∆x.∆x+ f(2∆x) sin 2m∆x.∆x+ · · ·+ f(n∆x) sinmn∆x.∆x

and its limiting value is
πw

0

f(x) sinmx.dx.

Hence the limiting form approached by the final equation as n is increased
is

πw

0

f(x) sinmx.dx =
π

2
am.

Whence am =
2
π

πw

0

f(x) sinmx.dx as before.

This method is practically the same as multiplying the equation

f(x) = a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · · (1)

by sinmx.dx and integrating both members from zero to π.
It is exceedingly important to realize that the short method of determining

any coefficient am of the series (1) which has just been described in the italicized
paragraph, is essentially the same as that of obtaining am by actual elimination
from the equations (4) Art. 19, and then supposing n to increase indefinitely,
thus making the curves (3) Art. 19 and (2) Art. 19 absolutely coincide between
the values of x which are taken as the limits of the definite integration.
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25. We see, then, that any function of x which is single-valued, finite,
and continuous between x = 0 and x = π, or if discontinuous has only finite
discontinuities each of which is preceded and succeeded by continuous portions,
can probably be developed into a series of the form

f(x) = a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · · (1)

where am =
2
π

πw

0

f(x) sinmx.dx =
2
π

πw

0

f(α) sinmα.dα; (2)

and the series and the function will be identical for all values of x between x = 0
and x = π, not including the values x = 0 and x = π unless the given function
is equal to zero for those values.

An elaborate investigation of the question of the convergence of the series
(1), for which we have not space, entirely confirms the result formulated above2

and shows in addition that at a point of finite discontinuity the series has a
value equal to half the sum of the two values which the function approaches as
we approach the point in question from opposite sides.

The investigation which we have made in the preceding sections establishes
the fact that the curve represented by y = f(x) need not follow the same
mathematical law throughout its length, but may be made up of portions of
entirely different curves. For example, a broken line or a locus consisting of
finite parts of several different and disconnected straight lines can be represented
perfectly well by y = a sine series.

26. Let us obtain a few sine developments.

(a) Let f(x) = x. (1)

We have x = a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · · (2)

where am =
2
π

πw

0

x sinmx.dx (3)

w
x sinmx.dx =

1
m2

(sinmx−mx cosmx),

πw

0

x sinmx.dx = − (−1)mπ
m

,

and x = 2
(

sinx
1
− sin 2x

2
+

sin 3x
3
− sin 4x

4
+ · · ·

)
(4)

2Provided the function has not an infinite number of maxima and minima in the neighbor-
hood of a point. v. Arts. 37–38.
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(b) Let f(x) = 1. (1)

am =
2
π

πw

0

sinmx.dx; (2)

w
sinmx.dx = −cosmx

m
,

πw

0

sinmx.dx =
1
m

(1− cosmπ) =
1
m

[1− (−1)m]

= 0 if m is even

=
2
m

if m is odd.

Hence 1 =
4
π

(
sinx

1
+

sin 3x
3

+
sin 5x

5
+

sin 7x
7

+ · · ·
)
. (3)

It is to be noticed that (3) gives at once a sine development for any constant
c. It is,

c =
4c
π

(
sinx

1
+

sin 3x
3

+
sin 5x

5
+ · · ·

)
. (4)

If we substitute x =
π

2
in (4) (a) or (3) (b) we get a familiar result, namely

π

4
=

1
1
− 1

3
+

1
5
− 1

7
+ · · · , (5)

a formula usually derived by substituting x = 1 in the power series for tan−1 x.
(v. Dif. Cal. Art. 135.)

(4) (a) does not hold good when x = π, and (3) (b) fails when x = 0 and
when x = π, for in all these cases the series reduces to zero.

(c) Let f(x) = x from x = 0 to x =
π

2
and

f(x) = π − x from x =
π

2
to x = π. That is, let

y = f(x) represent the broken line in the figure.
As the mathematical expression for f(x) is

different in the two halves of the curve we must
break up

πw

0

f(x) sinmx.dx into

π
2w

0

f(x) sinmx.dx+
πw

π
2

f(x) sinmx.dx.
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We have, then,

am =
2
π

π
2w

0

x sinmx.dx+
2
π

πw

π
2

(π − x) sinmx.dx (1)

=
4

m2π
sinm

π

2
.

But sinm
π

2
= 1 if m = 1 or 4k + 1
= 0 “ m = 2 “ 4k + 2
= −1 “ m = 3 “ 4k + 3
= 0 “ m = 4 “ 4k.

Hence if y = f(x) represents our broken line,

f(x) =
4
π

(
sinx
12
− sin 3x

32
+

sin 5x
52

− sin 7x
72

+ · · ·
)
. (2)

When x =
π

2
f(x) =

π

2
and we have

π2

8
=

1
12

+
1
32

+
1
52

+
1
72

+ · · · (3)

(d) As a case where the function has a finite discontinuity, let

f(x) = 1 from x = 0 to x =
π

2
and

f(x) = 0 “ x =
π

2
“ x = π.

y = f(x) will in this case represent the locus in the figure.
As before

πw

0

f(x) sinmx.dx =

π
2w

0

f(x) sinmx.dx

+
πw

π
2

f(x) sinmx.dx.

am =
2
π

π
2w

0

sinmx.dx+
2
π

πw

π
2

0. sinmx.dx. (1)

am =
2
π

π
2w

0

sinmx.dx =
2
π

1
m

(
1− cosm

π

2

)
.
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But cosm
π

2
= 0 if m = 1 or 4k + 1
= −1 “ m = 2 “ 4k + 2
= 0 “ m = 3 “ 4k + 3
= 1 “ m = 4 “ 4k.

Hence

f(x) =
2
π

(
sinx

1
+

2 sin 2x
2

+
sin 3x

3
+

sin 5x
5

+
2 sin 6x

6
+

sin 7x
7

+ · · ·
)
. (2)

If x =
π

2
the second member of (2) reduces to

1
2

, for

2
π

(
1
1
− 1

3
+

1
5
− 1

7
+ · · ·

)
=

1
2

by (5) (b);

and we see that the series represents the function completely for all values of
x between x = 0 and x = π except for x =

π

2
and there it has a value which

is the mean of the values approached by the function as x approaches
π

2
from

opposite sides.

EXAMPLES.

Obtain the following developments:—

(1) x2 =
2
π

[(
π2

1
− 4

13

)
sinx− π2

2
sin 2x+

(
π2

3
− 4

33

)
sin 3x− π2

4
sin 4x

+
(
π2

5
− 4

53

)
sin 5x− · · ·

]
.

(2) x3 =
2
π

[(
π3

1
− 6π

13

)
sinx−

(
π3

2
− 6π

23

)
sin 2x+

(
π3

3
− 6π

33

)
sin 3x

−
(
π3

4
− 6π

43

)
sin 4x+ · · ·

]
.

(3) f(x) =
2
π

[
sinx
12

+
π

22
sin 2x− sin 3x

32
− 2π

42
sin 4x+

sin 5x
52

+
3π
62

sin 6x− · · ·
]
,

if f(x) = x from x = 0 to x =
π

2
and f(x) = 0 from x =

π

2
to x = π.
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(4) sinµx =
2
π

sinµπ
[

sinx
12 − µ2

− 2 sin 2x
22 − µ2

+
3 sin 3x
32 − µ2

− 4 sin 4x
42 − µ2

+ · · ·
]

if µ is a fraction.

(5) ex =
2
π

[
1
2

(1 + eπ) sinx+
2
5

(1− eπ) sin 2x+
3
10

(1 + eπ) sin 3x

+
4
17

(1− eπ) sin 4x+ · · ·
]
.

(6) sinhx =
2 sinhπ

π

[
1
2

sinx− 2
5

sin 2x+
3
10

sin 3x− 4
17

sin 4x+ · · ·
]
.

(7) coshx =
2
π

[
1
2

(1 + coshπ) sinx+
2
5

(1− coshπ) sin 2x

+
3
10

(1 + coshπ) sin 3x+ · · ·
]
.

27. Let us now try to develop a given function of x in a series of cosines.
As before suppose that f(x) has a single value for each value of x between

x = 0 and x = π, that it does not become infinite between x = 0 and x = π,
and that if discontinuous it has only finite discontinuities.

Assume
f(x) = b0 + b1 cosx+ b2 cos 2x+ b3 cos 3x+ · · · (1)

To determine any coefficient bm multiply (1) by cosmx.dx and integrate each
term from 0 to π.

πw

0

b0 cosmx.dx = 0.

πw

0

bk cos kx cosmx.dx =
bk
2

πw

0

[cos(m− k)x+ cos(m+ k)x]dx

= 0 if m and k are not equal.

w
bm cos2mx.dx =

bm
2m

(mx+ cosmx sinmx),

πw

0

bm cos2mx.dx =
π

2
bm, if m is not zero.

Hence bm =
2
π

πw

0

f(x) cosmx.dx =
2
π

πw

0

f(α) cosmα.dα, (2)

if m is not zero.
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To get b0 multiply (1) by dx and integrate from zero to π.

πw

0

b0dx = b0π,

πw

0

bk cos kx.dx = 0.

Hence b0 =
1
π

πw

0

f(x)dx =
1
π

πw

0

f(α)dα, (3)

which is just half the value that would be given by formula (2) if zero were
substituted for m.

To save a separate formula (1) is usually written

f(x) = 1
2b0 + b1 cosx+ b2 cos 2x+ b3 cos 3x+ · · · (4)

and then the formula

bm =
2
π

πw

0

f(x) cosmx.dx =
2
π

πw

0

f(α) cosmα.dα (2)

will give b0 as well as the other coefficients.
It is important to see clearly that what we have just done in determining

the coefficients of (1) is equivalent to taking n+ 1 terms of (4), substituting in

y = 1
2b0 + b1 cosx+ b2 cos 2x+ · · ·+ bn cosnx (5)

in turn the coördinates of the n+ 1 points of the curve

y = f(x)

whose projections on the axis of X are equidistant, determining b0, b1, b2, · · · bn
by elimination from the n+ 1 resulting equations, and then taking the limiting
values they approach as n is indefinitely increased. (v. Art. 24.)

If ∆x =
π

n+ 1
the abscissas of the n+ 1 points used are 0, ∆x, 2∆x, 3∆x,

· · · n∆x, so that we should expect our cosine development to hold for x = 0 as
well as for values of x between zero and π.

28. Let us take one or two examples:

(a) Let f(x) = x. (1)

b0 =
2
π

πw

0

x dx =
2
π

π2

2
= π.

bm =
2
π

πw

0

x cosmx.dx =
2

m2π
(cosmπ − 1) =

2
m2π

[(−1)m − 1].
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Hence x =
π

2
− 4
π

(
cosx+

cos 3x
32

+
cos 5x

52
+

cos 7x
72

+ · · ·
)
. (2)

(2) holds good not only for values of x between zero and π but for x = 0
and x = π as well, since for these values we have

0 =
π

2
− 4
π

(
1 +

1
32

+
1
52

+
1
72

+ · · ·
)

(3)

and π =
π

2
+

4
π

(
1 +

1
32

+
1
52

+
1
72

+ · · ·
)

(4)

which are true by Art. 26 (c)(3).

(b) Let f(x) = x sinx. (1)

b0 =
2
π

πw

0

x sinx.dx =
2
π
π = 2,

b1 =
2
π

πw

0

x sinx cosx.dx =
1
π

πw

0

x sin 2x.dx = −1
2
,

bm =
2
π

πw

0

x sinx cosmx.dx =
1
π

πw

0

[x sin(m+ 1)x− x sin(m− 1)x]dx

=
2

(m− 1)(m+ 1)
if m is odd

= − 2
(m− 1)(m+ 1)

if m is even.

Hence

x sinx = 1− cosx
2
− 2 cos 2x

1.3
+

2 cos 3x
2.4

− 2 cos 4x
3.5

+ · · · (2)

If x =
π

2
we have

π

4
=

1
2

+
1

1.3
− 1

3.5
+

1
5.7
− · · · . (3)
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EXAMPLES.

Obtain the following developments:

(1) f(x) =
π

4
− 2
π

[
cos 2x

12
+

cos 6x
32

+
cos 10x

52
+

cos 14x
72

+ · · ·
]

if f(x) = x from x = 0 to x =
π

2
and f(x) = π − x from x =

π

2
to x = π.

(2) f(x) =
1
2

+
2
π

[
cosx

1
− cos 3x

3
+

cos 5x
5
− cos 7x

7
+ · · ·

]
,

if f(x) = 1 from x = 0 to x =
π

2
and f(x) = 0 from x =

π

2
to x = π.

(3) x2 =
π2

3
− 4
[

cosx
12
− cos 2x

22
+

cos 3x
32

− cos 4x
42

+ · · ·
]
,

(4) x3 =
π3

4
− 6
π

[(
π2

12
− 4

14

)
cosx− π2

22
cos 2x+

(
π2

32
− 4

34

)
cos 3x

− π2

42
cos 4x+

(
π2

52
− 4

54

)
cos 5x− · · ·

]
,

(5) f(x) =
π

8
+

2
π

[(
π

2
− 1
)

cosx− 2
22

cos 2x− 1
32

(
3π
2

+ 1
)

cos 3x

+
1
52

(
5π
2
− 1
)

cos 5x− 2
62

cos 6x− · · ·
]
,

if f(x) = x from x = 0 to x =
π

2
and f(x) = 0 from x =

π

2
to x = π.

(6) ex =
2
π

[
1
2

(eπ − 1)− 1
1 + 12

(eπ + 1) cosx+
1

1 + 22
(eπ − 1) cos 2x

− 1
1 + 32

(eπ + 1) cos 3x+ · · ·
]
,

(7) coshx =
2 sinhπ

π

[
1
2
− 1

2
cosx+

1
5

cos 2x− 1
10

cos 3x

+
1
17

cos 4x− · · ·
]
,

(8) sinhx =
2
π

[
1
2

(coshπ − 1)− 1
2

(coshπ + 1) cosx

+
1
5

(coshπ − 1) cos 2x− 1
10

(coshπ + 1) cos 3x+ · · ·
]
,

(9) cosµx =
2µ sinµπ

π

[
1

2µ2
− cosx
µ2 − 12

+
cos 2x
µ2 − 22

− cos 3x
µ2 − 32

+
cos 4x
µ2 − 42

− · · ·
]
,

if µ is a fraction.
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29. Although any function can be expressed both as a sine series and as
a cosine series, and the function and either series will be equal for all values of
x between zero and π, there is a decided difference in the two series for other
values of x.

Both series are periodic functions of x having the period 2π. If then we let
y equal the series in question and construct the portion of the corresponding
curve which lies between the values x = −π and x = π the whole curve will
consist of repetitions of this portion.

Since sinmx = − sin(−mx) the ordinate corresponding to any value of x
between −π and zero in the sine curve; will be the negative of the ordinate
corresponding to the same value of x with the positive sign. In other words the
curve

y = a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · · (1)

is symmetrical with respect to the origin.
Since cosmx = cos(−mx) the ordinate corresponding to any value of x

between −π and zero in the cosine curve will be the same as the ordinate
belonging to the corresponding positive value of x. In other words the curve

y = 1
2b0 + b1 cosx+ b2 cos 2x+ b3 cos 3x+ · · · (2)

is symmetrical with respect to the axis of Y .
If then f(x) = −f(−x), that is if f(x) is an odd function the sine series

corresponding to it will be equal to it for all values of x between −π and π,
except perhaps for the value x = 0 for which the series will necessarily be zero.

If f(x) = f(−x), that is if f(x) is an even function the cosine series corre-
sponding to it will be equal to it for all values of x between x = −π and x = π,
not excepting the value x = 0.

As an example of the difference between the sine and cosine developments
of the same function let us take the series for x.

y = 2
[
sinx− sin 2x

2
+

sin 3x
3
− sin 4x

4
+ · · ·

]
(3)

y =
π

2
− 4
π

[
cosx+

cos 3x
32

+
cos 5x

52
+

cos 7x
72

+ · · ·
]

(4)

[v. Art. 26(a) and Art. 28(a)]. (3) represents the curve
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and (4) the curve

Both coincide with y = x from x = 0 to x = π, (3) coincides with y = x from
x = −π to x = π, and neither coincides with y = x for values of x less than −π
or greater than π. Moreover (3), in addition to the continuous portions of the
locus represented in the figure, gives the isolated points (−π, 0) (π, 0) (3π, 0)
&c.

30. We have seen that if f(x) is an odd function its development in sine
series holds for all values of x from −π to π, as does the development of f(x)
in cosine series if f(x) is an even function.

Thus the developments of Art. 26(a), Art. 26 Exs. (2), (4), (6); Art. 28(b),
Art. 28 Exs. (3), (7), (9) are valid for all values of x between −π and π.

Any function of x can be developed into a Trigonometric series to which it
is equal for all values of x between −π and π.

Let f(x) be the given function of x. It can be expressed as the sum of an
even function of x and an odd function of x by the following device.

f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2
(1)

identically; but
f(x) + f(−x)

2
is not changed by reversing the sign of x and is

therefore an even function of x; and when we reverse the sign of x,
f(x)− f(−x)

2
is affected only to the extent of having its sign reversed and is consequently an
odd function of x.

Therefore for all values of x between −π and π

f(x) + f(−x)
2

=
1
2
b0 + b1 cosx+ b2 cos 2x+ b3 cos 3x+ · · ·

where bm =
2
π

πw

0

f(x) + f(−x)
2

cosmx.dx; and

f(x)− f(−x)
2

= a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · ·

where am =
2
π

πw

0

f(x)− f(−x)
2

sinmx.dx.



DEVELOPMENT IN TRIGONOMETRIC SERIES. 48

bm and am can be simplified a little.

bm =
2
π

πw

0

f(x) + f(−x)
2

cosmx.dx

=
1
π

[ πw

0

f(x) cosmx.dx+
πw

0

f(−x) cosmx.dx
]
,

but if we replace x by −x, we get

πw

0

f(−x) cosmx.dx = −
−πw

0

f(x) cosmx.dx =
0w

−π
f(x) cosmx.dx,

and we have bm =
1
π

πw

−π
f(x) cosmx.dx.

In the same way we can reduce the value of am to

1
π

πw

−π
f(x) sinmx.dx.

Hence  f(x) =
1
2
b0 + b1 cosx+ b2 cos 2x+ b3 cos 3x+ · · ·

+ a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · ·

 (2)

where bm =
1
π

πw

−π
f(x) cosmx.dx =

1
π

πw

−π
f(α) cosmα.dα. (3)

and am =
1
π

πw

−π
f(x) sinmx.dx =

1
π

πw

−π
f(α) sinmα.dα. (4)

and this development holds for all values of x between −π and π.
The second member of (2) is known as a Fourier’s Series.

EXAMPLES.

1. Obtain the following developments, all of which are valid from x = −π
to x = π:—

(1) ex =
2 sinhπ

π

[
1
2
− 1

2
cosx+

1
5

cos 2x− 1
10

cos 3x+
1
17

cos 4x+ · · ·
]

+
2 sinhπ

π

[
1
2

sinx− 2
5

sin 2x+
3
10

sin 3x− 4
17

sin 4x+ · · ·
]
.
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(2) f(x) =
π

4
− 2
π

[
cosx+

cos 3x
32

+
cos 5x

52
+

cos 7x
72

+ · · ·
]

+
sinx

1
− sin 2x

2
+

sin 3x
3
− sin 4x

4
+ · · · ,

where f(x) = 0 from x = −π to x = 0 and f(x) = x from x = 0 to x = π.

(3) f(x) = − 3π
16

+
1
π

[
1
12

cosx+
2
22

cos 2x+
1
32

cos 3x+
1
52

cos 5x

+
2
62

cos 6x+ · · ·
]

+
1
π

[(
3π
2
− 1
)

sinx− 3π
4

sin 2x+
(

3π
6

+
1
32

)
sin 3x

− 3π
8

sin 4x+
(

3π
10
− 1

52

)
sin 5x− · · ·

]
,

where f(x) = x from x = −π to x = 0, f(x) = 0 from x = 0 to x =
π

2
,

and f(x) = x− π

2
from x =

π

2
to x = π.

2. Show that formula (2) Art. 30 can be written

f(x) =
1
2
c0 cosβ0 + c1 cos(x− β1) + c2 cos(2x− β2) + c3 cos(3x− β3) + · · ·

where cm = (a2
m + b2m)

1
2 and βm = tan−1 am

bm
.

3. Show that formula (2) Art. 30 can be written

f(x) =
1
2
c0 sinβ0 + c1 sin(x+ β1) + c2 sin(2x+ β2) + c3 sin(3x+ β3) + · · ·

where cm = (a2
m + b2m)

1
2 and βm = tan−1 bm

am
.

31. In developing a function of x into a Trigonometric series it is often
inconvenient to be held within the narrow boundaries x = −π and x = π. Let
us see if we cannot widen them.

Let it be required to develop a function of x into a Trigonometric series
which shall be equal to f(x) for all values of x between x = −c and x = c.

Introduce a new variable
z =

π

c
x,

which is equal to −π when x = −c and to π when x = c.
f(x) = f

( c
π
z
)

can be developed in terms of z by Art. 30 (2), (3), and (4).



DEVELOPMENT IN TRIGONOMETRIC SERIES. 50

We have

f
( c
π
z
)

=
1
2
b0 + b1 cos z + b2 cos 2z + b3 cos 3z + · · ·

+ a1 sin z + a2 sin 2z + a3 sin 3z + · · ·

 (1)

where bm =
1
π

πw

−π
f
( c
π
z
)

cosmz.dz. (2)

and am =
1
π

πw

−π
f
( c
π
z
)

sinmz.dz. (3)

and (1) holds good from z = −π to z = π.
Replace z by its value in terms of x and (1) becomes

f(x) =
1
2
b0 + b1 cos

πx

c
+ b2 cos

2πx
c

+ b3 cos
3πx
c

+ · · ·

+ a1 sin
πx

c
+ a2 sin

2πx
c

+ a3 sin
3πx
c

+ · · ·

 (4)

The coefficients in (4) are the same as in (1), and (4) holds good from x = −c
to x = c.

Formulas (2) and (3) can be put into more convenient shape.

bm =
1
π

πw

−π
f
( c
π
z
)

cosmz.dz =
1
π

cw

−c
f(x) cos

mπx

c

π

c
dx

or bm =
1
c

cw

−c
f(x) cos

mπx

c
dx =

1
c

cw

−c
f(λ) cos

mπλ

c
dλ. (5)

In like manner we can transform (3) into

am =
1
c

cw

−c
f(x) sin

mπx

c
dx =

1
c

cw

−c
f(λ) sin

mπλ

c
dλ. (6)

By treating in like fashion formulas (1) and (2) Art. 25 and formulas (4) and
(2) Art. 27 we get

f(x) = a1 sin
πx

c
+ a2 sin

2πx
c

+ a3 sin
3πx
c

+ · · · (7)

where am =
2
c

cw

0

f(x) sin
mπx

c
dx =

2
c

cw

0

f(λ) sin
mπλ

c
dλ. (8)

and f(x) =
1
2
b0 + b1 cos

πx

c
+ b2 cos

2πx
c

+ b3 cos
3πx
c

+ · · · (9)

where bm =
2
c

cw

0

f(x) cos
mπx

c
dx =

2
c

cw

0

f(λ) cos
mπλ

c
dλ. (10)

and (7) and (9) hold good from x = 0 to x = c.
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EXAMPLES.

1. Obtain the following developments:

(1) 1 =
4
π

[
sin

πx

c
+

1
3

sin
3πx
c

+
1
5

sin
5πx
c

+ · · ·
]

from x = 0 to x = c.

(2) x =
2c
π

[
sin

πx

c
− 1

2
sin

2πx
c

+
1
3

sin
3πx
c
− 1

4
sin

4πx
c

+ · · ·
]

from x = −c to x = c.

x =
c

2
− 4c
π2

[
cos

πx

c
+

1
32

cos
3πx
c

+
1
52

cos
5πx
c

+
1
72

cos
7πx
c

+ · · ·
]

from x = −c to x = c.

(3) x2 =
2c2

π3

[(
π2

1
− 4

13

)
sin

πx

c
− π2

2
sin

2πx
c

+
(
π2

3
− 4

32

)
sin

3πx
c

− π2

4
sin

4πx
c

+
(
π2

5
− 4

53

)
sin

5πx
c

+ · · ·
]

from x = 0 to x = c.

x2 =
c2

3
− 4c2

π2

[
cos

πx

c
− 1

22
cos

2πx
c

+
1
32

cos
3πx
c
− 1

42
cos

4πx
c

+ · · ·
]

from x = −c to x = c.

(4) ex = 2π
[

1 + ec

c2 + π2
sin

πx

c
+

2(1− ec)
c2 + 4π2

sin
2πx
c

+
3(1 + ec)
c2 + 9π2

sin
3πx
c

+
4(1− ec)
c2 + 16π2

sin
4πx
c

+ · · ·
]
,

ex = 2c
[

1
2
ec − 1
c2

− ec + 1
c2 + π2

cos
πx

c
+

ec − 1
c2 + 4π2

cos
2πx
c

− ec + 1
c2 + 9π2

cos
3πx
c

+ · · ·
]

from x = 0 to x = c.

(5) f(x) =
4c
π2

[
sin

πx

c
− 1

32
sin

3πx
c

+
1
52

sin
5πx
c

+ · · ·
]

from x = 0 to x = c,

where f(x) = x from x = 0 to x =
c

2
and f(x) = c− x from x =

c

2
to x = c.
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2. Show that formula (4) Art. 31 can be written

f(x) =
1
2
c0 cosβ0 + c1 cos

(
πx

c
− β1

)
+ c2 cos

(
2πx
c
− β2

)
+ c3 cos

(
3πx
c
− β3

)
+ · · ·

where cm = (a2
m + b2m)

1
2 and βm = tan−1 am

bm
.

3. Show that formula (4) Art. 31 can be written

f(x) =
1
2
c0 sinβ0 + c1 sin

(
πx

c
+ β1

)
+ c2 sin

(
2πx
c

+ β2

)
+ c3 sin

(
3πx
c

+ β3

)
+ · · ·

where cm = (a2
m + b2m)

1
2 and βm = tan−1 am

bm
.

32. In the formulas of Art. 31 c may have as great a value as we please, so
that we can obtain a Trigonometric Series for f(x) that will represent the given
function through as great an interval as we may choose to take. If, then, we can
obtain the limiting form approached by the series (4) Art. 31 as c is indefinitely
increased the expression in question ought to be equal to the given function of
x for all values of x. Equation (4) Art. 31 can be written as follows if we replace
b0, b1, b2, · · · a1, a2, · · · by their values given in Art. 31 (5) and (6).

f(x) =
1
c

[
1
2

cw

−c
f(λ) dλ

+
cw

−c
f(λ) cos

πλ

c
cos

πx

c
dλ+

cw

−c
f(λ) cos

2πλ
c

cos
2πx
c
dλ+ · · ·

+
cw

−c
f(λ) sin

πλ

c
sin

πx

c
dλ+

cw

−c
f(λ) sin

2πλ
c

sin
2πx
c
dλ+ · · ·

]

=
1
c

cw

−c
f(λ) dλ

[
1
2

+ cos
πλ

c
cos

πx

c
+ sin

πλ

c
sin

πx

c

+ cos
2πλ
c

cos
2πx
c

+ sin
2πλ
c

sin
2πx
c

+ · · ·
]
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f(x) =
1
c

cw

−c
f(λ) dλ

[
1
2

+ cos
π

c
(λ− x) + cos

2π
c

(λ− x) + · · ·
]

=
1
2c

cw

−c
f(λ) dλ

[
1 + cos

π

c
(λ− x) + cos

2π
c

(λ− x) + · · ·

+ cos
(
−π
c

)
(λ− x) + cos

(
−2π
c

)
(λ− x) + · · ·

]
since cos(−φ) = cosφ.

f(x) =
1

2π

cw

−c
f(λ) dλ

[
· · ·+ π

c
cos
(
−2π
c

)
(λ− x) +

π

c
cos
(
−π
c

)
(λ− x)

+
π

c
cos

0π
c

(λ− x) +
π

c
cos

π

c
(λ− x)

+
π

c
cos

2π
c

(λ− x) + · · ·
]

(1)

As c is indefinitely increased the limiting value approached by the parenthesis
in (1) is

∞w

−∞
cosα(λ− x).dα.

Hence the limiting form approached by (1) is

f(x) =
1

2π

∞w

−∞
f(λ) dλ

∞w

−∞
cosα(λ− x).dα, (2)

and the second member of (2) must be equal to f(x) for all values of x.
The double integral in (2) is known as Fourier’s Integral, and since it is a

limiting form of Fourier’s Series it is subject to the same limitations as the
series.

That is, in order that (2) should be true f(x) must be finite, continuous,
and single valued for all values of x, or if discontinuous, must have only finite
discontinuities.3

(2) is sometimes given in a slightly different form.

Since
∞w

−∞
cosα(λ− x).dα =

0w

−∞
cosα(λ− x).dα+

∞w

0

cosα(λ− x).dα

and
0w

−∞
cosα(λ− x).dα =

0w

∞
cos(−α)(λ− x).d(−α) = −

0w

∞
cosα(λ− x).dα

∞w

−∞
cosα(λ− x).dα = 2

∞w

0

cosα(λ− x).dα

3See note on page 38.
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and (2) may be written

f(x) =
1
π

∞w

−∞
f(λ) dλ

∞w

0

cosα(λ− x).dα. (3)

If f(x) is an even function or an odd function (3) can be still further simpli-
fied.

Let f(x) = −f(−x).
Since the limits of integration in (3) do not contain α or λ the integrations

may be performed in whichever order we choose. That is

∞w

−∞
f(λ) dλ

∞w

0

cosα(λ− x).dα =
∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x).dλ.

Now

∞w

−∞
f(λ) cosα(λ− x).dλ =

0w

−∞
f(λ) cosα(λ− x).dλ+

∞w

0

f(λ) cosα(λ− x).dλ.

0w

−∞
f(λ) cosα(λ− x).dλ =

0w

∞
f(−λ) cosα(−λ− x).d(−λ)

= −
∞w

0

f(λ) cosα(λ+ x).dλ

and (3) becomes

f(x) =
1
π

∞w

0

dα

∞w

0

f(λ)[cosα(λ− x)− cosα(λ+ x).dλ

=
2
π

∞w

0

dα

∞w

0

f(λ) sinαλ sinαx.dλ

or f(x) =
2
π

∞w

0

f(λ)dλ
∞w

0

sinαλ sinαx.dα. (4)

If f(x) = f(−x) (3) can be reduced in like manner to

f(x) =
2
π

∞w

0

f(λ) dλ
∞w

0

cosαλ cosαx.dα. (5)

Although (4) holds for all values of x only in case f(x) is an odd function,
and (5) only in case f(x) is an even, function, both (4) and (5) hold for all
positive values of x in the case of any function.
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EXAMPLE.

(1) Obtain formulas (4) and (5) directly from (7) and (9) Art. 31.
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CHAPTER III.

CONVERGENCE OF FOURIER’S SERIES.

33. The question of the convergence of a Fourier’s Series is altogether
too large to be completely handled in an elementary treatise. We will, however,
consider at some length one of the most important of the series we have obtained,
namely

4
π

[
sinx+

sin 3x
3

+
sin 5x

5
+

sin 7x
7

+ · · ·
]
, [v. (3) Art. 26(b).]

and prove that for all values of x between zero and π its sum is absolutely equal
to unity; that is, that the limit approached by the sum of n terms of the series

2
π

[
sinx

πw

0

sinα.dα+ sin 2x
πw

0

sin 2α.dα+ sin 3x
πw

0

sin 3α.dα+ · · ·
]
,

as n is indefinitely increased, is 1, provided that x lies between zero and π.
Let

Sn =
2
π

[
sinx

πw

0

sinα.dα+ sin 2x
πw

0

sin 2α.dα+ sin 3x
πw

0

sin 3α.dα+ · · ·

+ sinnx
πw

0

sinnα.dα
]
. (1)

Then

Sn =
2
π

πw

0

[sinα sinx+ sin 2α sin 2x+ sin 3α sin 3x+ · · ·+ sinnα sinnx]dα

=
1
π

πw

0

[ cos(α− x)− cos(α+ x) + cos 2(α− x)− cos 2(α+ x) + · · ·

+ cosn(α− x)− cosn(α+ x)] dα

=
1
π

πw

0

[cos(α− x) + cos 2(α− x) + cos 3(α− x) + · · ·+ cosn(α− x)]dα

− 1
π

πw

0

[cos(α+ x) + cos 2(α+ x) + cos 3(α+ x) + · · ·+ cosn(α+ x)]dα.
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Therefore by Art. 20 (1)

Sn =
1
π

πw

0

[
−1

2
+

1
2

sin(2n+ 1)
α− x

2

sin
α− x

2

]
dα

− 1
π

πw

0

[
−1

2
+

1
2

sin(2n+ 1)
α+ x

2

sin
α+ x

2

]
dα.

Sn =
1

2π

πw

0

sin(2n+ 1)
α− x

2

sin
α− x

2

dα− 1
2π

πw

0

sin(2n+ 1)
α+ x

2

sin
α+ x

2

dα.

In the first integral substitute β for
α− x

2
, and in the second integral sub-

stitute β for
α+ x

2
.

We get

Sn =
1
π

π
2−

x
2w

− x2

sin(2n+ 1)β
sinβ

dβ − 1
π

π
2 + x

2w

x
2

sin(2n+ 1)β
sinβ

dβ. (2)

It remains to find the limit approached by Sn as n is indefinitely increased.

34. π
2w

0

sin(2n+ 1)β
sinβ

dβ =
π

2
. (1)

For

sin(2n+ 1)β
2 sinβ

= 1
2 + cos 2β + cos 4β + · · ·+ cos 2nβ, by Art. 20.

and

π
2w

0

cos 2kβ.dβ = 0.

Let us construct the curve

y =
sin(2n+ 1)x

sinx
.

We have only to draw the curve y = sin(2n + 1)x and then to divide the
length of each ordinate by the value of the sine of the corresponding abscissa.

In y = sin(2n+ 1)x the successive arches into which the curve is divided by
the axis of X are equal, and consequently their areas are equal.
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Each arch has for its altitude unity and for its base
π

2n+ 1
and is symmetrical with respect to the ordinate

of its highest or lowest point.

If now we form the curve y =
sin(2n+ 1)x

sinx
from

the curve y = sin(2n + 1)x, it is clear that, since sinx
increases as x increases from 0 to

π

2
, the ordinate of

any point of the new curve will be shorter than the
ordinate of the corresponding point in the preceding
arch, and that consequently the area of each arch y =
sin(2n+ 1)x

sinx
will be less than that of the arch before

it.
If a0, a1, a2, · · · an−1 are the areas of the successive

arches and an that of the incomplete arch terminated
by the ordinate corresponding to x =

π

2
π
2w

0

sin(2n+ 1)x
sinx

dx = a0 − a1 + a2 − a3 + · · · .

But
π
2w

0

sin(2n+ 1)x
sinx

dx =

π
2w

0

sin(2n+ 1)β
sinβ

dβ =
π

2
by (1).

Hence
π

2
= a0 − a1 + a2 − a3 + a4 − · · ·+ an if n is even,

or
π

2
= a0 − a1 + a2 − a3 + a4 − · · · − an if n is odd.

These equations can be written

π

2
= a0 + (−a1 + a2) + (−a3 + a4)

+ (−a5 + a6) + · · ·+ (−an−1 + an)

if n is even, and

π

2
= a0 + (−a1 + a2) + (−a3 + a4)

+ (−a5 + a6) + · · ·+ (−an−2 + an−1) + (−an)

if n is odd.
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In either case each parenthesis is a negative quantity since

a0 > a1 > a2 > a3 · · · > an,

and it follows that a0 is greater than
π

2
.

Again
π

2
= a0 − a1 + (a2 − a3) + (a4 − a5) + · · ·+ (an−2 − an−1) + an

if n is even and

π

2
= a0 − a1 + (a2 − a3) + (a4 − a5) + · · ·+ (an−1 − an)

if n is odd.
In either case each parenthesis is positive and it follows that a0−a1 is is less

than
π

2
.

Since
a0 >

π

2
> a0 − a1,

a0 and a0 − a1 differ from
π

2
by less than they differ from each other, that is,

by less than a1.
In like manner we can show that a0 − a1 and a0 − a1 + a2 differ from

π

2
by

less than a2; and in general that a0 − a1 + a2 − a3 + · · · ± ak differs from
π

2
by

less than ak; or even that

a0 − a1 + a2 − a3 + · · · ± ak
p

differs from
π

2
by less than ak no matter the value of p, provided p is greater

than unity.

35. From what has been proved in the last article it follows that

bw

0

sin(2n+ 1)x
sinx

dx,

where b is some value between
π

2n+ 1
and

π

2
, differs from

π

2
by less than the

area of the arch in which the ordinate of y =
sin(2n+ 1)x

sinx
corresponding to

x = b falls if this ordinate divides an arch, or by less than the area of the arch
next beyond the point (b, 0) if the curve crosses the axis of X at that point.

The area of the arch in question is less than
π

2n+ 1
, its base, multiplied by

1

sin
(
b− π

2n+ 1

) , a value greater than the length of its longest ordinate.
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Therefore
bw

0

sin(2n+ 1)x
sinx

dx

differs from
π

2
by less than

π

2n+ 1
1

sin
(
b− π

2n+ 1

) .

If now n is indefinitely increased
π

2n+ 1
1

sin
(
b− π

2n+ 1

) approaches zero

as its limit, and we get the very important result

limit
n=∞

[ bw
0

sin(2n+ 1)x
sinx

dx

]
=
π

2
(1)

if 0 < b <
π

2
.

36. Sn =
1
π

π
2−

x
2w

− x2

sin(2n+ 1)β
sinβ

dβ − 1
π

π
2 + x

2w

x
2

sin(2n+ 1)β
sinβ

dβ. [Art. 33. (2)]

=
1
π

0w

− x2

sin(2n+ 1)β
sinβ

dβ +
1
π

π
2−

x
2w

0

sin(2n+ 1)β
sinβ

dβ

− 1
π

π
2w

0

sin(2n+ 1)β
sinβ

dβ +
1
π

x
2w

0

sin(2n+ 1)β
sinβ

dβ

− 1
π

π
2 + x

2w

π
2

sin(2n+ 1)β
sinβ

dβ.

This last value for Sn can be somewhat simplified.
Substituting γ = −β we get

0w

− x2

sin(2n+ 1)β
sinβ

dβ = −
0w

x
2

sin(2n+ 1)γ
sin γ

dγ =

x
2w

0

sin(2n+ 1)β
sinβ

dβ.

Substituting γ = π − β in

π
2 + x

2w

π
2

sin(2n+ 1)β
sinβ

dβ we have
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π
2 + x

2w

π
2

sin(2n+ 1)β
sinβ

dβ = −
π
2−

x
2w

π
2

sin(2n+ 1)γ
sin γ

dγ =

π
2w

π
2−

x
2

sin(2n+ 1)β
sinβ

dβ

=

π
2w

0

sin(2n+ 1)β
sinβ

dβ −
π
2−

x
2w

0

sin(2n+ 1)β
sinβ

dβ.

Hence

Sn =
2
π

x
2w

0

sin(2n+ 1)β
sinβ

dβ +
2
π

π
2−

x
2w

0

sin(2n+ 1)β
sinβ

dβ − 2
π

π
2w

0

sin(2n+ 1)β
sinβ

dβ.

π
2w

0

sin(2n+ 1)β
sinβ

dβ =
π

2
by (1) Art. 34.

limit
n=∞

[ x
2w

0

sin(2n+ 1)β
sinβ

dβ

]
=
π

2
if 0 < x < π by (1) Art. 35

and

limit
n=∞

[ π2− x2w

0

sin(2n+ 1)β
sinβ

dβ

]
=
π

2
if 0 < x < π by (1) Art. 35.

Therefore limit
n=∞

[Sn] = 1 + 1− 1 = 1 if 0 < x < π and

4
π

[
sinx+

sin 3x
3

+
sin 5x

5
+

sin 7x
7

+ · · ·
]

= 1

for all values of x between zero and π.

37. By a somewhat long but not especially difficult extension of the
reasoning just given it can be shown that if f(x) is single-valued and finite
between x = −π and x = π, and has only a finite number of discontinuities and
of maxima and minima between x = −π and x = π the Fourier’s Series

1
2
b0 + b1 cosx+ b2 cos 2x+ b3 cos 3x+ · · ·

+ a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · ·

where am =
1
π

πw

−π
f(α) sinmα.dα

and bm =
1
π

πw

−π
f(α) cosmα.dα,
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and that Fourier’s Series only is equal to f(x) for all values of x between x = −π
and x = π, excepting the values of x corresponding to the discontinuities of f(x),
and the values π and −π if f(π) is not equal to f(−π); and that if c is a value
of x corresponding to a discontinuity of f(x), the value of the series when x = c
is

1
2

limit
ε
.
=0

[f(c− ε) + f(c+ ε)];

and that if f(π) is not equal to f(−π) the value of the series when x = −π and
when x = π is

1
2

[f(−π) + f(π)].

If f(x) while satisfying the conditions named in the preceding paragraph
except for a finite number of values of x, becomes infinite for those values, the
series is equal to the function except for the values of x in question provided

that
πw

−π
f(x) dx is finite and determinate. (v. Int. Cal. Arts. 83 and 84.)

38. The question of the convergency of a Fourier’s Series and the condi-
tions under which a function may be developed in such a series was first attacked
successfully by Dirichlet in 1829, and his conclusions have been criticised and ex-
tended by later mathematicians, notably by Riemann, Heine, Lipschitz, and du
Bois Reymond. It may be noted that the criticisms relate not to the sufficiency
but to the necessity of Dirichlet’s conditions.

An excellent résumé of the literature of the subject is given by Arnold Sachse
in a short dissertation published by Gauthier–Villars, Paris, 1880, entitled “Es-
sai Historique sur la Représentation d’une Fonction Arbitraire d’une seule vari-
able par une Série Trigonométrique.”

39. A good deal of light is thrown on the peculiarities of trigonometric
series by the attempt to construct approximately the curves corresponding to
them.

If we construct y = a1 sinx and y = a2 sin 2x and add the ordinates of the
points having the same abscissas we shall obtain points on the curve

y = a1 sinx+ a2 sin 2x.

If now we construct y = a3 sin 3x and add the ordinates to those of y =
a1 sinx+ a2 sin 2x we shall get the curve

y = a1 sinx+ a2 sin 2x+ a3 sin 3x.

By continuing this process we get successive approximations to

y = a1 sinx+ a2 sin 2x+ a3 sin 3x+ a4 sin 4x+ · · ·

Let us apply this method to a few of the series which we have obtained in
Chapter II.
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Take

y = sinx+
1
3

sin 3x+
1
5

sin 5x+ · · · (1)

= 0 when x = 0,
π

4
from x = 0 to x = π, and 0 when x = π,

v. Art. 26 [b](3).

y = 2
(

sinx− 1
2

sin 2x+
1
3

sin 3x− 1
4

sin 4x+ · · ·
)

(2)

= x from x = 0 to x = π, and 0 when x = π,

Art. 26 [a](4).

y =
4
π

[
1
12

sinx− 1
32

sin 3x+
1
52

sin 5x− 1
72

sin 7x+ · · ·
]

(3)

= x from x = 0 to x =
π

2
, and π − x from x =

π

2
to x = π,

Art. 26 [c](2).

y =
1
1

sinx+
2
2

sin 2x+
1
3

sin 3x+
1
5

sin 5x− 2
6

sin 6x+
1
7

sin 7x+ · · · (4)

= 0 when x = 0,
π

2
from x = 0 to x =

π

2
, and 0 from x =

π

2
to x = π,

v. Art. 26 [d ](2).
It must be borne in mind that each of these curves is periodic having the

period 2π, and is symmetrical with respect to the origin.
The following figures I, II, III, and IV represent the first four approximations

to each of these curves.
In each figure the curve y = the series, and the approximation in question

are drawn in continuous lines, and the preceding approximation and the curve
corresponding to the term to be added are drawn in dotted lines.
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Figs. I, II, III, and IV immediately suggest the following facts:
(a) The curve representing each approximation is continuous even when the

curve representing the series is discontinuous.
(b) When the curve representing the series is discontinuous the portion of

each successive approximate curve in the neighborhood of the point whose ab-
scissa is a value of x for which the series curve is discontinuous approaches more
and more nearly a straight line perpendicular to the axis of X and connecting
the separate portions of the series curve.
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(c) The curves representing successive approximations do not necessarily
tend to lose their wavy character, since each is obtained from the preceding one
by superposing upon it a wave line whose waves are shorter each time but do
not necessarily lose their sharpness of pitch. This is the case in Figures I, II,
and IV. In Fig. III the waves of the superposed curves grow rapidly flatter.

It follows from this that in such cases as those represented in Figures I, II, and
IV the direction of the approximate curve at a point having a given abscissa does
not in general approach the direction of the series curve at the corresponding
point, or indeed, approach any limiting value, as the approximation is made
closer and closer; and that the length of any portion of the approximate curve
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will not in general approach the length of the corresponding portion of the series
curve.

Analytically this amounts to saying that the derivative of a function of x
cannot in general be obtained by differentiating term by term the Fourier’s
Series which represents the function.

(d) The area bounded by a given ordinate, the approximate curve, the axis
of X, and any second ordinate will approach as its limit the corresponding area
of the series curve if the series curve is continuous between the ordinates in
question; and will approach the area bounded by the given ordinate, the series
curve, the axis of X, any second ordinate, and a line perpendicular to the axis
of X, and joining the separate portions of the series curve if the latter has a
discontinuity between the ordinates in question.

Analytically this amounts to saying that the Fourier’s Series corresponding
to any given function can be integrated term by term and the resulting series will
represent the integral of the function even when the function is discontinuous
(v. Int. Cal. Art. 83).

We may note in passing that if the function curve is continuous a curve
representing the integral of the function will be continuous and will not change
its direction abruptly at any point; while if the function curve is discontinuous
the curve representing the integral will still be continuous but will change its
direction abruptly at points corresponding to the discontinuities of the given
function.

40. The facts that the derivative of a Fourier’s Series cannot in general
be obtained by differentiating the series term by term and that its integral can
be obtained by integrating the series term by term are so important that it is
worth while to look at the matter a little more closely. Let us consider the
differentiation of the series represented in Art. 39 Figure I.

Let

Sn = sinx+
1
3

sin 3x+
1
5

sin 5x+ · · ·+ 1
2n+ 1

sin(2n+ 1)x.

Then
dSn
dx

= cosx+ cos 3x+ cos 5x+ · · ·+ cos(2n+ 1)x.

If x =
π

2
dSn
dx

= 0

and the curve is parallel to the axis of X for x =
π

2
no matter what the value

of n.
If x = 0 or x = π

dSn
dx

= 1 + 1 + 1 + 1 + · · ·+ 1 = n+ 1
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and the curve y = Sn becomes more nearly perpendicular to the axis of X at
the origin and for x = π as we increase n.

If x =
π

3

dSn
dx

=
1
2
− 1 +

1
2

+
1
2
− 1 +

1
2

+ · · ·

That is
dSn
dx

=
1
2

if n = 0 or n = 3k

= −1
2

“ n = 1 “ n = 3k + 1

= 0 “ n = 2 “ n = 3k + 2.

Consequently when x =
π

3
dSn
dx

does not approach any limiting value as n is
indefinitely increased. Indeed, in the successive approximations the point whose
abscissa is

π

3
is successively on the rear, on the front, and on the crest or in the

trough of a wave, and although the waves are getting smaller they do not lose
their sharpness of pitch.

If x has any other value between 0 and π
dSn
dx

will change abruptly as n is
changed and will not approach any limiting value as n is increased.

41. In general if we differentiate a Fourier’s Series

S =
1
2
b0 + b1 cosx+ b2 cos 2x+ b3 cos 3x+ · · ·

+ a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · ·
we get

− b1 sinx − 2b2 sin 2x − 3b3 sin 3x − · · ·

+ a1 cosx+ 2a2 cos 2x+ 3a3 cos 3x+ · · · .

Differentiate again and we get

− b1 cosx− 22b2 cos 2x− 32b3 cos 3x− · · ·
− a1 sinx− 22a2 sin 2x− 32b3 sin 3x − · · · .

We see that each time we differentiate we multiply the coefficient of sin kx
and of cos kx by k while the term still involves cos kx or sin kx.

Since the series

cosx+ cos 2x+ cos 3x+ · · ·
+ sinx+ sin 2x + sin 3x + · · ·

is not convergent, and a Fourier’s Series converges only because its coefficients
decrease as we advance in the series, the differentiation of a Fourier’s Series must
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make its convergence less rapid if it does not actually destroy it, and repetitions
of the process will usually eventually make the derived series diverge.

It is to be observed that the derived series are Fourier’s Series, but of some-
what special form, that is they lack the constant term. (v. Art. 30.)

If now we integrate a Fourier’s Series

1
2
b0 + b1 cosx+ b2 cos 2x+ b3 cos 3x+ · · ·

+ a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · ·

we get C +
1
2
b0x+ b1 sinx +

1
2
b2 sin 2x +

1
3
b3 sin 3x + · · ·

− a1 cosx− 1
2
a2 cos 2x− 1

3
a3 cos 3x− · · · ,

a Trigonometric Series which converges more rapidly than the given series.
It is to be observed that the series obtained by integrating a Fourier’s Series

is not in general a Fourier’s Series owing to the presence of the term 1
2b0x. (v.

Art. 30.)

42. We are now ready to consider the conditions under which a function
of x can be developed into a Fourier’s Series whose term by term derivative shall
be equal to the derivative of the function.

Let the function f(x) satisfy the conditions stated in Art. 37. Then there is
one Fourier’s Series and but one which is equal to it. Call this series S.

Let the derivative f ′(x)1 of the given function also satisfy the conditions
stated in Art. 37. Then f ′(x) can be expressed as a Fourier’s Series. By Art. 39
(d) the integral of this latter series will be equal to the integral of f ′(x), that is
to f(x) plus a constant, and one integral will be equal to f(x).

If this integral which is necessarily a Trigonometric Series is a Fourier’s Series
it must be identical with S. It will be a Fourier’s Series only in case the Fourier’s
Series for f ′(x) lacks the constant term 1

2b0.

But b0 =
1
π

πw

−π
f ′(x)dx by (3) Art. 30.

Therefore b0 =
1
π

[f(π)− f(−π)];

and will be zero if f(π) = f(−π).
In order that f ′(x) shall satisfy the conditions stated in Art. 37 f(x) while

satisfying the same conditions must in addition be finite and continuous between
x = −π and x = π.

If, then, f(x) is single-valued, finite, and continuous, and has only a finite
number of maxima and minima, between x = −π and x = π, (the values x = −π
and x = π being included), and if f(π) = f(−π) f(x) can be developed into a

1We shall regularly use the notation f ′(x) for
df(x)

dx
. v. Dif. Cal. Art. 124.
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Fourier’s Series whose term by term derivative will be equal to the derivative of
the function.

It will be observed that in this case the periodic curve y = S is continuous
throughout its whole extent.

43. Since a Fourier’s Integral is a limiting case of a Fourier’s Series the
conclusions stated in this chapter hold, mutatis mutandis for a Fourier’s Integral.

For example if a function of x is finite and single-valued for all values of x
and has not an infinite number of discontinuities or of maxima and minima in
the neighborhood of any value of x it will be equal to the Fourier’s Integral

1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x).dλ

and to that Fourier’s Integral only, and the integral with respect to x of this
Fourier’s Integral will be equal to

w
f(x)dx.

If in addition f(x) is finite and continuous for all values of x the derivative

of the Fourier’s Integral with respect to x will be equal to
df(x)
dx

.
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CHAPTER IV.

SOLUTION OF PROBLEMS IN PHYSICS BY THE AID OF FOURIER’S
INTEGRALS AND FOURIER’S SERIES.

44. In Art. 7 we have already considered at some length a problem in
Heat Conduction which required the use of a Fourier’s Series. We shall begin
the present chapter with a problem closely analogous in its treatment to that
of Art. 7, but calling for the use of a Fourier’s Integral.

Suppose that electricity is flowing in a thin plane sheet of infinite extent and
that the value of the potential function is given for every point in some straight
line in the sheet, required the value of the potential function at any point of the
sheet.

Let us take the line as the axis of X and consider at first only those points
for which y is positive:

We have, then, to satisfy the equation

D2
xV +D2

yV = 0 (1)

subject to the conditions

V = 0 when y =∞
V = f(x) “ y = 0

(2)
(3)

where f(x) is a given function, and we are not concerned with negative values
of y.

As in Art. 7 we have e−αy sinαx and e−αy cosαx as particular values of V
which satisfy (1) and (2). We must multiply them by constant coefficients and
so combine them as to satisfy condition (3).

By (3) Art. 32

f(x) =
1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x).dλ. (4)

We wish to build up a value of V which will reduce to (4) when y = 0. This
requires a little care but not much ingenuity.

Take e−αy cosαx and e−αy sinαx and multiply the first by cosαλ, and the
second by sinαλ; they are still values of V which satisfy (1). Add these and we
get

e−αy cosα(λ− x),

still a value of V which satisfies (1), no matter what the values of α and λ.
Multiply by f(λ)dλ and we have

e−αyf(λ) cosα(λ− x).dλ (5)
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as a value of V which satisfies (1).

V =
∞w

−∞
e−αyf(λ) cosα(λ− x).dλ (6)

is still a solution of (1) since it is the limit of the sum of terms covered by the
form (5); and finally

V =
1
π

∞w

0

dα

∞w

−∞
e−αyf(λ) cosα(λ− x).dλ (7)

is a solution of (1) as it is
1
π

multiplied by the limit of the sum of terms formed

by multiplying the second member of (6) by dα and giving different values to
α.

But (7) must be our required solution since while it satisfies (1) and (2), it
reduces to (4) when y = 0 and therefore satisfies condition (3).

If f(x) is an even function we can reduce (7) to the form

V =
2
π

∞w

0

dα

∞w

0

e−αyf(λ) cosαx cosαλ.dλ (8)

and if f(x) is an odd function to the form

V =
2
π

∞w

0

dα

∞w

0

e−αyf(λ) sinαx sinαλ.dλ. (9)

(7), (8), and (9) are valid only for positive values of y, but as the problem
is obviously symmetrical with respect to the axis of X, (7), (8), and (9) enable
us to get the value of the potential function at any point of the plane.

EXAMPLES.

1. Obtain forms (8) and (9) directly by the aid of (5) and (4) Art. 32.

2. State a problem in statical electricity of which the solution given in
Art. 44 is the solution.

45. As a special case under Art. 44 let us consider the problem:—To find
the value of the potential function at any point of a thin plane sheet of infinite
extent where all points of a given line which lie to the left of the origin are kept
at potential zero, and all points which lie to the right of the origin are kept at
potential unity.

Here f(x) = 0 if x < 0 and f(x) = 1 if x > 0.



SOLUTION OF PROBLEMS IN PHYSICS. 72

(7) Art. 44 gives us the required solution. It is

V =
1
π

∞w

0

dα

∞w

0

e−αy cosα(λ− x).dλ; (1)

but this can be much simplified.
We have

V =
1
π

∞w

0

dλ

∞w

0

e−αy cosα(λ− x).dα.

Now
∞w

0

e−ax cosmx.dx =
a

a2 +m2

if a > 0. (Int. Cal. Art. 82, Ex. 8.)

Hence
∞w

0

e−αy cosα(λ− x).dα =
y

y2 + (λ− x)2
,

and V =
1
π

∞w

0

y dλ

y2 + (λ− x)2
=

1
π

(
π

2
+ tan−1 x

y

)
.

tan
(
π

2
− tan−1 x

y

)
= ctn

(
tan−1 x

y

)
=
y

x
;

and consequently

V =
1
π

(
π

2
+ tan−1 x

y

)
= 1− 1

π
tan−1 y

x
. (2)

Since log z = log(x+ yi) =
1
2

log(x2 + y2) + i tan−1 y

x
,

[Int. Cal. Art. 33 (2)],

i− 1
π

log z = i− 1
π

log(x+ yi) = − 1
2π

log(x2 + y2) + i

(
1− 1

π
tan−1 y

x

)

and 1− 1
π

tan−1 y

x
and − 1

2π
log(x2 + y2) are conjugate functions. (v. Int. Cal.

Arts. 209 and 210.) Hence

V1 = − 1
2π

log(x2 + y2) (3)

is a solution of the equation

D2
xV1 +D2

yV1 = 0; (4)
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and the curves

1
π

(
π

2
+ tan−1 x

y

)
= a (5)

and − 1
2π

log(x2 + y2) = b (6)

cut each other at right angles.
If we construct the curves obtained by giving different values to a in (5)

we get a set of equipotential lines for the conducting sheet described at the
beginning of this article, and the curves obtained by giving different values to
(b) in (6) will be the lines of flow.

Moreover since
V1 = − 1

2π
log(x2 + y2) (3)

is a solution of Laplace’s Equation (4), the lines of flow just mentioned will be
equipotential lines for a certain distribution of potential, for which the equipo-
tential lines above mentioned will be lines of flow.

V = a, that is

1
π

(
π

2
+ tan−1 x

y

)
= a, (5)

reduces to y = −x tan aπ. (7)

If now we give to a values differing by a constant amount we get a set of
straight lines radiating from the origin and at equal angular intervals.

V1 = b, that is

− 1
2π

log(x2 + y2) = b, (6)

reduces to

x2 + y2 = e−2πb. (8)

If we give to b a set of values differing
by a constant amount we get a set of circles
whose centres are at the origin and whose
radii form a geometrical progression. They
are the equipotential lines for a thin plane
sheet of infinite extent where the potential
function is kept equal to given different con-
stant values on the circumferences of two given concentric circles or where we
have a source at the origin; and for this system the lines (7) are lines of flow,
and (3) is the complete solution.

The figure gives the equipotential lines and lines of flow for either system,
but only for positive values of y. The complete figure has the axis of X as an
axis of symmetry.
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EXAMPLES.

1. Solve the problem of Art. 44 for the case where

f(x) = −1 if x < 0 and f(x) = 1 if x > 0.

Ans., V =
2
π

tan−1 x

y
.

2. Solve the problem of Art. 44 for the case where

f(x) = a if x < 0 and f(x) = b if x > 0.

Ans., V =
1
2

(a+ b) +
1
π

(b− a) tan−1 x

y
.

3. Reduce (7), (8), and (9) Art. 44 to the forms

V =
1
π

∞w

−∞

yf(λ)dλ
y2 + (λ− x)2

,

V =
1
π

∞w

0

yf(λ)dλ
[

1
y2 + (λ− x)2

+
1

y2 + (λ+ x)2

]
,

V =
1
π

∞w

0

yf(λ)dλ
[

1
y2 + (λ− x)2

− 1
y2 + (λ+ x)2

]
,

respectively.

46. An especially interesting case of Art. 44 is the following where

f(x) = 0 if x < −1, f(x) = 1 if − 1 < x < 1, and f(x) = 0 if x > 1.

Here V =
1
π

[
tan−1 1 + x

y
+ tan−1 1− x

y

]
. (1)

Now
1
π

log[(1− z)i] =
1
π

log[(1− x− yi)i] =
1
π

log[y + (1− x)i]

=
1

2π
log[(1− x)2 + y2] +

i

π
tan−1 1− x

y
,

and

− 1
π

log[(−1− z)i] = − 1
π

log[(−1− x− yi)i] = − 1
π

log[y − (1 + x)i]

= − 1
2π

log[(1 + x)2 + y2] +
i

π
tan−1 1 + x

y
.
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1
π

log
1− z
−1− z

=
1

2π
log

(1− x)2 + y2

(1 + x)2 + y2
+
i

π

[
tan−1 1 + x

y
+ tan−1 1− x

y

]
.

Hence

1
π

(
tan−1 1 + x

y
+ tan−1 1− x

y

)
and

1
2π

log
(1− x)2 + y2

(1 + x)2 + y2

are conjugate functions:1 and

1
π

(
tan−1 1 + x

y
+ tan−1 1− x

y

)
= a (2)

is any equipotential line, and

1
2π

log
(1− x)2 + y2

(1 + x)2 + y2
= b (3)

any line of flow for the system described at the beginning of this article; and

V1 =
1

2π
log

(1− x)2 + y2

(1 + x)2 + y2
(4)

is the solution of a new problem for which (3) represents any equipotential line
and (2) any line of flow.

1The function conjugate to

1

π

»
tan−1 1 + x

y
+ tan−1 1− x

y

–
might have been found as follows. If φ is the required function and ψ the given function we
have by Int. Cal. Arts. 211, 212, and 213 the relations

Dxφ = Dyψ and Dyφ = −Dxψ.

Here Dyψ = −
1

π

»
1 + x

(1 + x)2 + y2
+

1− x
(1− x)2 + y2

–
and −Dxψ = −

1

π

»
y

(1 + x)2 + y2
−

y

(1− x)2 + y2

–
.

If now we integrate Dyψ with respect to x treating y as a constant and add an arbitrary
function of y we shall have φ. So that

φ = −
1

2π


log[(1 + x)2 + y2 ]− log[(1− x)2 + y2 ]

ff
+ f(y).

Dyφ = −
1

π

»
y

(1 + x)2 + y2
−

y

(1− x)2 + y2

–
+
df(y)

dy

Comparing this with its equal −Dxψ above we find
df(y)

dy
= 0 and f(y) = C a constant

therefore
1

2π
log

(1− x)2 + y2

(1 + x)2 + y2
+ C,

where C may be taken at pleasure, is our required conjugate function.
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(2) reduces to
2y

x2 + y2 − 1
= tan aπ

or x2 + (y − ctn aπ)2 = csc2 aπ; (5)

and (3) to x2 + y2 + 2
e2bπ + 1
e2bπ − 1

x+ 1 = 0

or
(
x+

ebπ + e−bπ

ebπ − e−bπ

)2

+ y2 =
(
ebπ + e−bπ

ebπ − e−bπ

)2

− 1

or (x+ ctnh bπ)2 + y2 = csch2 bπ. (6)

(5) and (6) are circles. The circles (5) have their centres in the axis of Y , and
pass through the points (−1, 0) and (1, 0); and the circles (6) have their centres
in the axis of X.

(4) is the complete solution, (6) is any equipotential line and (5) any line
of flow for a plane sheet in which the points in the circumferences of two given
circles whose centres are further apart than the sum of their radii are kept at
different constant potentials, or where a source and a sink of equal intensity are
placed at the points (−1, 0) and (1, 0). An important practical example is where
two wires connected with the poles of a battery are placed with their free ends
in contact with a thin plane sheet of conducting material. The figure shows the
equipotential lines and lines of flow of either system.

The complete figure would have the axis of X for an axis of symmetry.

EXAMPLES.

1. Show that if f(x) = a1 when x < −b, f(x) = a2 when −b < x < b,
f(x) = a3 when x > b,

V =
a1 + a3

2
+

1
π

[
(a2 − a1) tan−1 b+ x

y
+ (a2 − a3) tan−1 b− x

y

]
.
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2. Show that if f(x) = 0 if x < 0, f(x) = a1 if 0 < x < b1, f(x) = a2 if
b1 < x < b2, f(x) = a3 if b2 < x < b3, &c.,

V =
1
π

[
a1 tan−1 x

y
+ (a1 − a2) tan−1 b1 − x

y
+ (a2 − a3) tan−1 b2 − x

y

+ (a3 − a4) tan−1 b3 − x
y

+ · · ·
]
.

3. Show that if f(x) = −1 if x < −1, f(x) = x if −1 < x < 1, f(x) = 1 if
x > 1,

V =
1
π

[
(1 + x) tan−1 1 + x

y
− (1− x) tan−1 1− x

y
+
y

2
log

(1− x)2 + y2

(1 + x)2 + y2

]
.

4. Show that if f(x) = −1 if x < −1, f(x) = 0 if −1 < x < 1, f(x) = 1 if
x > 1,

V =
1
π

[
tan−1 1 + x

y
− tan−1 1− x

y

]
.

Show that the equipotential lines are equilateral hyperbolas passing through
the points (−1, 0) and (1, 0), and that the lines of flow are Cassinian ovals hav-
ing (−1, 0) and (1, 0) as foci. The lines of flow are equipotential lines and the
equipotential lines are lines of flow for the case where the points (−1, 0) and
(1, 0) are kept at the same infinite potential, or where very small ovals surround-
ing these points are kept at the same finite potential. The case is approximately
that of a pair of wires connected with the same pole of a battery whose other
pole is grounded, and then placed with their ends in contact with a thin plane
conducting sheet.

5. Show that if f(x) = 0 if x < 0, f(x) = −1 if 0 < x < a, f(x) = 0 if
a < x < b, and f(x) = 1 if x > b,

V =
1
π

[
π

2
− tan−1 a− x

y
− tan−1 b− x

y
− tan−1 x

y

]
.

The conjugate function

V =
1

2π
log

x2 + y2

[(a− x)2 + y2][(b− x)2 + y2]

is the solution for the case where a sink and two sources of equal intensity lie
on the axis of X, the sink at the origin and the sources at the distances a and b
to the right of the origin. One of the lines of flow is easily seen to be the circle
x2 + y2 = ab.
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47. If the plane conducting sheet has two straight edges at right angles
with each other and one is kept at potential zero while the value of the potential
function is given at each point of the second, that is if V = 0 when x = 0 and
V = f(x) when y = 0, the solution is readily obtained. It is

V =
2
π

∞w

0

dα

∞w

0

e−αyf(λ) sinαx sinαλ.dλ. (1)

v. (9) Art. 44.
This reduces to

V =
1
π

∞w

0

f(λ)dλ
[

y

y2 + (λ− x)2
− y

y2 + (λ+ x)2

]
. (2)

v. Ex. 3 Art. 45.

EXAMPLES.

1. If V = 0 when y = 0 and V = F (y) when x = 0 show that

V =
2
π

∞w

0

dα

∞w

0

e−αxF (λ) sinαy sinαλ.dλ

=
1
π

∞w

0

F (λ)dλ
[

x

x2 + (λ− y)2
− x

x2 + (λ+ y)2

]
.

2. If V = f(x) when y = 0 and V = F (y) when x = 0 show that

V =
1
π

∞w

0

[
f(λ)

(
y

y2 + (λ− x)2
− y

y2 + (λ+ x)2

)
+ F (λ)

(
x

x2 + (λ− y)2
− x

x2 + (λ+ y)2

)]
dλ.

3. If F (y) = b the result of Ex. 2 reduces to

V =
2b
π

tan−1 y

x
+

1
π

∞w

0

f(λ)dλ
[

y

y2 + (λ− x)2
− y

y2 + (λ+ x)2

]
.

4. If F (y) = 1 for 0 < y < 1 and F (y) = 0 for y > 1 while f(x) = 1 for
0 < x < 1 and f(x) = 0 for x > 1

V =
1
π

[
tan−1 1− x

y
− tan−1 1 + x

y
+ 2 tan−1 y

x

+ tan−1 1− y
x
− tan−1 1 + y

x
+ 2 tan−1 x

y

]
.
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5. If one edge of the conducting sheet treated in Art. 47 is insulated, so
that DxV = 0 if x = 0 and V = f(x) when y = 0

V =
2
π

∞w

0

dα

∞w

0

e−αyf(λ) cosαx cosαλ.dλ

=
1
π

∞w

0

f(λ)dλ
[

y

y2 + (λ+ x)2
+

y

y2 + (λ− x)2

]
.

48. If the conducting sheet is a long strip with parallel edges one of which
is at potential zero while the value of the potential function is given at all points
of the other, that is if V = 0 when y = 0 and V = F (x) when y = b the problem
is not a very difficult one.

Since we are no longer concerned with the value of V when y = ∞ V =
eαy sin ax and V = eαy cos ax are available as particular solutions of the equation

D2
xV +D2

yV = 0 (1)

as well as V = e−αy sinαx and V = e−αy cosαx.

Consequently
eαy + e−αy

2
sinαx = coshαy sinαx [Int. Cal. Art. 43 (2)]

and
eαy − e−αy

2
sinαx = sinhαy sinαx [Int. Cal. Art. 43 (1)]

and coshαy cosαx and sinhαy cosαx

are now available values of V and can be used precisely as e−αy cosαx and
e−αy sinαx are used in Art. 44.

Following the same course as in Art. 44 we get

V =
1
π

∞w

0

dα

∞w

−∞

sinhαy
sinhαb

F (λ) cosα(λ− x).dλ (2)

as a solution of (1) which will reduce to V = F (x) when y = b

and to V = 0 when y = 0, since sinh 0 =
1− 1

2
= 0,

and (2) is therefore our required solution.
If V is to be equal to zero when y = b and to f(x) when y = 0 we have only

to replace y by b− y and F (x) by f(x) in (2). We get

V =
1
π

∞w

0

dα

∞w

−∞

sinhα(b− y)
sinhαb

f(λ) cosα(λ− x).dλ. (3)



SOLUTION OF PROBLEMS IN PHYSICS. 80

If V = f(x) when y = 0 and V = F (x) when y = b then

V =
1
π

∞w

0

dα

∞w

−∞

sinhα(b− y)
sinhαb

f(λ) cosα(λ− x).dλ

+
1
π

∞w

0

dα

∞w

−∞

sinhαy
sinhαb

F (λ) cosα(λ− x).dλ.

This can be considerably simplified by the aid of the formula

∞w

0

sinh px
sinh qx

cos rx.dx =
π

2q

sin
pπ

q

cos
pπ

q
+ cosh

rπ

q

if p2 < q2. [Bierens de Haan, Tables of Def. Int. (7) 265] and becomes

V =
1
2b

sin
π

b
(b− y)

∞w

−∞
f(λ)

dλ

cos
π(b− y)

b
+ cosh

π

b
(λ− x)

+
1
2b

sin
πy

b

∞w

−∞
F (λ)

dλ

cos
πy

b
+ cosh

π

b
(λ− x)

or

V =
1
2b

sin
πy

b

∞w

−∞

[
fλ

cosh
π

b
(λ− x)− cos

πy

b

+
Fλ

cosh
π

b
(λ− x) + cos

πy

b

]
dλ. (5)

EXAMPLES.

1. Given the formula
w dx

a+ b coshx
=

2√
b2 − a2

tan−1

(√
b− a
b+ a

tanh
x

2

)
if b > a,

show that if V = 1 when y = 0 and V = 0 when y = b V =
1
b

(b− y).

2. Show that if V = 0 when y = b, V = −1 when y = 0 and x < 0, and
V = 1 when y = 0 and x > 0

V =
2
π

tan−1

[
tanh

πx

2b
tan

πy

2b

]

The solution for the conjugate system, that is, for a strip having a source at
(0, 0) and an infinitely distant sink is

V = − 1
π

log
[
cosh2 πx

2b
− cos2 πy

2b

]
.
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3. Show that if V = −1 when y = 0 and x < 0, V = 1 when y = 0 and
x > 0, V = −1 when y = b and x < 0, and V = 1 when y = b and x > 0,

V =
2
π

tan−1

(
tan

π

2b
(b− y) tanh

πx

2b

)
+

2
π

tan−1

(
tan

π

2b
y tanh

πx

2b

)

=
2
π

tan−1

[
sinh

πx

b

sin
πy

b

]
.

The solution for the conjugate system, that is, for a strip having a source and
a sink at the points (0, 0) and (0, b) is

V =
1
π

log

[
cosh

πx

b
+ cos

πy

b

cosh
πx

b
− cos

πy

b

]
.

4. If V = 0 when x = 0, V = f(x) when y = 0 and x > 0, and V = 0 when
y = b and x > 0.

V =
1
π

∞w

0

dα

∞w

0

sinhα(b− y)
sinhαb

[cosα(λ− x)− cosα(λ+ x)]f(λ)dλ

=
1
2b

sin
πy

b

∞w

0

[
1

cosh
π

b
(λ− x)− cos

πy

b

− 1

cosh
π

b
(λ+ x)− cos

πy

b

]
f(λ)dλ

for positive values of x and for values of y between 0 and b.

5. If V1 = 0 when x = 0, V1 = F (x) when y = b and x > 0, and V1 = 0
when y = 0 and x > 0

V1 =
1
2b

sin
πy

b

∞w

0

[
1

cosh
π

b
(λ− x) + cos

πy

b

− 1

cosh
π

b
(λ+ x)− cos

πy

b

]
F (λ)dλ

for positive values of x and values of y between 0 and b.

6. If V2 = 0 when x = 0, V2 = f(x) when y = 0 and x > 0, and V2 = F (x)
when y = b and x > 0

V2 = V + V1 for x > 0 and 0 < y < b. (v. Exs. 4 and 5)

7. If one edge of the strip described in Art. 48 is insulated so that we have
V = f(x) when y = 0 and DyV = 0 when y = b show that

V =
1
π

∞w

0

dα

∞w

−∞

coshα(b− y)
coshαb

f(λ) cosα(λ− x).dλ.
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By the aid of the formula

∞w

0

cosh px
cosh qx

cos rx.dx =
π

q

cosh
rπ

2q
cos

pπ

2q

cos
pπ

q
+ cosh

rπ

q

if p < q,

[Bierens de Haan, Def. Int. Tables (6) 265],
reduce this to

V =
1
b

sin
πy

2b

∞w

−∞

f(λ) cosh
π

2b
(λ− x)

cosh
π

b
(λ− x)− cos

πy

b

dλ.

8. If V = 0 when y = 0 or b and x < −a, V = 1 when y = 0 or b and
−a < x < a, and V = 0 when y = 0 or b and x > a

V =
1
π

[
tan−1

sinh
π(a− x)

b

sin
πy

b

+ tan−1
sinh

π(a+ x)
b

sin
πy

b

]
.

9. If V = 0 when y = 0 or b and x < −a, V = 1 when y = 0 and
−a < x < a, V = 0 when y = 0 or b and x > a, and V = −1 when y = b and
−a < x < a

V =
1
π

[
tan−1

tanh
π(a− x)

b

tan
πy

b

+ tan−1
tanh

π(a+ x)
b

tan
πy

b

]
.

10. A system conjugate to that of Ex. 9 is V = +∞ when y = 0 or b and
x = −a, V = −∞ when y = 0 or b and x = a. In this case

V =
1

2π
log

sin2 πy

b
+ sinh2 π(a− x)

b

sin2 πy

b
+ sinh2 π(a+ x)

b

.

49. Let us take now a problem in the flow of heat. Suppose we have an
infinite solid in which heat flows only in one direction, and that at the start the
temperature of each point of the solid is given. Let it be required to find the
temperature of any point of the solid at the end of the time t.

Here we have to solve the equation

Dtu = a2D2
xu (1)

[v. Art. 1 (II)] subject to the condition

u = f(x) when t = 0. (2)
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As the equation (1) is linear with constant coefficients we can get a particular
solution by the device used in Arts. 7 and 8.

Let u = eβt+αx and substitute in (1). We get

β = a2α2

as the only relation which need hold between β and α.

Hence u = eαx+a2α2t = ea
2α2teαx (3)

is a solution of (1) no matter what value is given to α.
To get a trigonometric form replace α by αi.

Then u = e−a
2α2teαxi.

If in (3) we replace α by −αi we get

u = e−a
2α2te−αxi.

As in Arts. 7 and 8 we get from these values

u = e−a
2α2t sinαx and u = e−a

2α2t cosαx

as particular solutions of (1), α being wholly unrestricted.
From these values we wish to build up a value of u which shall reduce to

f(x) when t = 0 and shall still be a solution of (1).

We have f(x) =
1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x).dλ (4)

v. Art. 32 (3), and by proceeding as in Art. 44 we get

u =
1
π

∞w

0

dα

∞w

−∞
e−a

2α2tf(λ) cosα(λ− x).dλ (5)

as our required value of u.
This can be considerably simplified.
Changing the order of integration

u =
1
π

∞w

−∞
f(λ)dλ

∞w

0

e−a
2α2t cosα(λ− x).dα. (6)

∞w

0

e−a
2α2t cosα(λ− x).dα =

1
2a

√
π

t
.e−

(λ−x)2

4a2t (7)

by the formula
∞w

0

e−a
2x2

cos bx.dx =
√
π

2a
e−

b2

4a2 [Int. Cal. Art. 94 (2)]

Hence u =
1

2a
√
πt

∞w

−∞
f(λ)e−

(λ−x)2

4a2t dλ. (8)
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Let now β =
λ− x
2a
√
t
,

then λ = x+ 2a
√
t.β

and u =
1√
π

∞w

−∞
f(x+ 2a

√
t.β)e−β

2
dβ. (9)

EXAMPLES.

1. Let the solid be of infinite extent and let the temperature be equal to a
constant c at the time t = 0.

Then u =
c√
π

∞w

−∞
e−β

2
dβ =

2c√
π

∞w

0

e−β
2
dβ = c.

v. Int. Cal. Art. 92 (2).

2. Let u = x when t = 0.

Then u =
1√
π

∞w

−∞
(x+ 2a

√
t.β)e−β

2
dβ = x.

3. Let u = x2 when t = 0.

Then u = x2 + 2a2t.

4. Let u = 0 if x < −b, u = 1 if −b < x < b, and u = 0 if x > b, when t = 0.

Then

u =
1√
π

b−x
2a
√
tw

− b+x
2a
√
t

e−β
2
dβ =

2√
π

[
b

2a
√
t
− b3 + 3bx2

3(2a
√
t)3

+
b5 + 10b3x2 + 5bx4

5.2!(2a
√
t)5

− · · ·
]
.

5. Let u = 0 if x < 0 and u = 1 if x > 0 when t = 0.
Then

u =
1√
π

∞w

− x
2a
√
t

e−β
2
dβ =

1√
π

[ x
2a
√
tw

0

e−β
2
dβ +

∞w

0

e−β
2
dβ

]
=

1√
π

x
2a
√
tw

0

e−β
2
dβ +

1
2

=
1
2

+
1√
π

[
x

2a
√
t
− x3

3.(2a
√
t)3

+
x5

5.2!(2a
√
t)5
− x7

7.3!(2a
√
t)7

+ · · ·
]
.

6. An iron slab 10 c. m. thick is placed between and in contact with two
very thick iron slabs. The initial temperature of the middle slab is 100◦, and of
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each of the outer slabs 0◦. Required the temperature of a point in the middle
of the inner slab fifteen minutes after the slabs have been put together. Given
a2 = 0.185 in C.G.S. units. Ans., 21◦.6.

7. Two very thick iron slabs one of which is at the temperature 0◦ and the
other at the temperature 100◦ throughout are placed together face to face. Find
the temperature of each slab 10 c. m. from their common face fifteen minutes
after they have been placed together. Ans., 70◦.8, 29◦.2.

8. Find a particular solution of Dtu = a2D2
xu on the assumption that it is

of the form u = T.X where T is a function of t alone and X is a function of x
alone.

50. If our solid has one plane face which is kept at the constant tem-
perature zero, and we start with any given distribution of heat, the problem is
somewhat modified.

Take the origin of coördinates in the plane face. Then we have as before the
equation

Dtu = a2D2
xu, (1)

but our conditions are

u = 0 when x = 0 (2)
u = f(x) “ t = 0 (3)

and we are concerned only with positive values of x.
We may then use the form (4) Art. 32

f(x) =
2
π

∞w

0

dα

∞w

0

f(λ) sinαx sinαλ.dλ, (4)

and proceeding as in the last section we get

u =
2
π

∞w

0

dα

∞w

0

e−a
2α2tf(λ) sinαx sinαλ.dλ (5)

as our required solution. This may be reduced considerably.

u =
1
π

∞w

0

f(λ)dλ
∞w

0

e−a
2α2t[cosα(λ− x)− cosα(λ+ x)]dα,

or u =
1

2a
√
πt

∞w

0

f(λ)(e−
(λ−x)2

4a2t − e−
(λ+x)2

4a2t )dλ (6)

by (7) Art. 49, and this may be reduced to the form

u =
1√
π

[ ∞w

− x
2a
√
t

e−β
2
f(x+ 2a

√
t.β)dβ −

∞w

x
2a
√
t

e−β
2
f(−x+ 2a

√
t.β)dβ

]
. (7)
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EXAMPLES.

1. Let the initial temperature be constant and equal to c.
Then

u =
c√
π

[ ∞w

− x
2a
√
t

e−β
2
dβ −

∞w

x
2a
√
t

e−β
2
dβ

]

=
2c√
π

x
2a
√
tw

0

e−β
2
dβ

=
2c√
π

[
x

2a
√
t
− x3

3.(2a
√
t)3

+
x5

5.2!(2a
√
t)5
− x7

7.3!.(2a
√
t)7

+ · · ·
]
.

2. Assuming that the earth was originally at the temperature 7000◦ Fahren-
heit throughout, and that the surface was kept at the constant temperature 0◦,
find (1) the temperature 10 miles below the surface 10,000,000 years after the
cooling began; (2) the temperature 1 mile below the surface at the same epoch;
(3) the temperature 10 miles below the surface 100,000,000 years after the cool-
ing began; (4) the temperature 1 mile below the surface at the same epoch; (5)
the rate at which the temperature was increasing with the distance from the
surface at each point at each epoch.

Neglect the convexity of the earth’s surface and take Sir Wm. Thomson’s
value of a2(400) the foot, the Fahrenheit degree, and the year being taken as
units. (Thomson and Tait’s Nat. Phil. Vol. II. Appendix.)

Ans., (1) 3114◦; (2) 329◦.5; (3) 1036◦; (4) 103◦; (5) 1◦ for every 20 feet, 3◦

for every 50 feet, 1◦ for every 50 feet, 1◦ for every 50 feet.

3. Let the initial temperature be constant and equal to −b, then by Ex. 1

u = − 2b√
π

x
2a
√
tw

0

e−β
2
dβ.

4. Let the temperature of the plane face be b instead of zero, and let the
initial temperature be zero.

Then we have only to add b to the second member of the solution in Ex. 3,
as we may since u = b is a solution of (1) Art. 49, and we get

u = b

(
1− 2√

π

x
2a
√
tw

0

e−β
2
dβ

)
.

5. Let u = b when x = 0 and u = f(x) when t = 0.
Then

u = b

(
1− 2√

π

x
2a
√
tw

0

e−β
2
dβ

)
+

1
2a
√
πt

∞w

0

f(λ)[e−
(λ−x)2

4a2t − e−
(λ+x)2

4a2t ]dλ
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by (6) Art. 50.

6. Let u = b when x = 0 and u = c when t = 0.

Then u = b+ (c− b) 2√
π

x
2a
√
tw

0

e−β
2
dβ.

7. If the earth has been cooling for 200,000,000 years from a uniform tem-
perature, prove that the rate of cooling is greatest at a depth of about 76 miles,
and that at a depth of about 130 miles the rate of cooling has reached its max-
imum value for all time. Let a2 = 400.

8. Show that if the plane face of the solid considered in Art. 50 instead of
being kept at temperature zero is impervious to heat

u =
1

2a
√
πt

∞w

0

f(λ)(e−
(λ−x)2

4a2t + e−
(λ+x)2

4a2t )dλ. v. (6) Art. 50.

51. If the temperature of the plane face of the solid described in Art. 50
is a given function of the time and the initial temperature is zero, the solution
of the problem can be obtained by a very ingenious method due to Riemann.

Here we have to solve the equation

Dtu = a2D2
xu (1)

subject to the conditions

u = F (t) when x = 0
u = 0 “ t = 0.

}
(2)

We know that

u =
2√
π

x
2a
√
tw

0

e−β
2
dβ

is a solution of (1), v. Ex. 1 Art. 50. It is easily shown that

u =
2√
π

x
2a
√
t−cw

0

e−β
2
dβ, (3)

where c is any constant, is a solution of (1).
For

Dtu = − 2√
π

x

2a
1

2(t− c) 3
2
e
− x2

4a2(t−c) = − x

2a
√
π

(t− c)− 3
2 e
− x2

4a2(t−c)

Dxu =
2√
π

1
2a
√
t− c

e
− x2

4a2(t−c)

D2
xu = − 2√

π

1
2a
√
t− c

2x
4a2(t− c)

e
− x2

4a2(t−c) = − x

2a3
√
π

(t− c)− 3
2 e
− x2

4a2(t−c)
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and Dtu = a2D2
xu.

Let φ(x, t) be a function of x and t which shall be equal to zero if t is negative
and shall be equal to

1− 2√
π

x
2a
√
tw

0

e−β
2
dβ

if t is equal to or greater than zero; so that if x = 0 φ(x, t) = 1 and if t =
0 φ(x, t) = 0.

We shall now attack the following problem, to solve equation (1) subject to
the conditions

u = 0 if t = 0
u = F (0) “ x = 0 and 0 < t < τ

u = F (kτ) “ x = 0 “ kτ < t < (k + 1)τ,

where k is any whole number and τ is any arbitrarily chosen interval of time.
If we form the value

u = F (kτ)[φ(x, t− kτ)− φ(x, t− (k + 1)τ)] (4)

u will satisfy equation (1) since zero, unity and

2√
π

x
2a
√
t−kτw

0

e−β
2
dβ

are values of u which satisfy (1). u will be zero if t < kτ by the definition of the
function φ(x, t); if x = 0 u = 0 if t > (k+1)τ and u = F (kτ) if kτ < t < (k+1)τ .

Therefore

u =
k=∞∑
k=0

F (kτ)[φ(x, t− kτ)− φ(x, t− (k + 1)τ)] (5)

is the solution of the problem stated above.
(5) can be simplified somewhat from the consideration that for a given value

of t φ(x, t − kτ) = 0 if kτ > t. If, then, nτ is the greatest whole multiple of τ
not exceeding t,

u =
k=n∑
k=0

F (kτ)[φ(x, t− kτ)− φ(x, t− (k + 1)τ)]. (6)

If now we decrease τ indefinitely the limiting form of (6) will be the solution
of the problem stated at the beginning of this article.

(6) may be written

u =
k=n∑
k=0

F (kτ)
[
φ(x, t− kτ)− φ(x, t− (k + 1)τ)

τ

]
τ (7)
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and if τ is indefinitely decreased the limiting form of (7) is

u = −
tw

0

F (λ)Dλφ(x, t− λ)dλ. (8)

Since t− λ is positive between the limits of integration

φ(x, t− λ) = 1− 2√
π

x
2a
√
t−λw

0

e−β
2
dβ,

and Dλφ(x, t− λ) =− x

2a
√
π
e
− x2

4a2(t−λ) (t− λ)−
3
2 ;

and (8) may be written

u =
x

2a
√
π

tw

0

F (λ)e−
x2

4a2(t−λ) (t− λ)−
3
2 dλ, (9)

or if we let β =
x

2a
√
t− λ

u =
2√
π

∞w

x
2a
√
t

e−β
2
F

(
t− x2

4a2β2

)
dβ. (10)

EXAMPLES.

1. If u = nt when x = 0 and u = 0 when t = 0

u = n

(
t+

x2

2a2

)[
1− 2√

π

x
2a
√
tw

0

e−β
2
dβ

]
− nx

√
t

a
√
π
e−

x2

4a2t .

2. A thick iron slab is at the temperature zero throughout, one of its plane
faces is then kept at the temperature 100◦ Centigrade for 5 minutes, then at the
temperature zero for the next 5 minutes, then at the temperature 100◦ for the
next 5 minutes, and then at the temperature zero. Required the temperature of
a point in the slab 5 c.m. from the face at the expiration of 18 minutes. Given;
a2 = .185. Ans., 20◦.1.

3. If u = F (t) when x = 0 and u = f(x) when t = 0, then

u =
2√
π

∞w

x
2a
√
t

e−β
2
F

(
t− x2

4a2β2

)
dβ +

1
2a
√
πt

∞w

0

(e−
(λ−x)2

4a2t − e−
(λ+x)2

4a2t )f(λ)d(λ).

v. (6) Art. 50.
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4. If in Art. (51) F (t) is a periodic function of the time of period T it can
be expressed by a Fourier’s series of the form

F (t) =
1
2
b0 +

m=∞∑
m=1

[am sinmαt+ bm cosmαt], where α =
2π
T
,

or F (t) =
1

2b0
+
m=∞∑
m=1

ρm sin(mαt+ λm),

where ρm cosλm = am and ρm sinλm = bm. v. Art. 31 Ex. 3.

Show that with this value of F (t) (10) Art. 51. becomes

u =
1√
π
b0

∞w

x
2a
√
t

e−β
2
dβ +

2√
π

m=∞∑
m=1

ρm

[
sin(mαt+ λm)

∞w

x
2a
√
t

e−β
2

cos
mαx2

4a2β2
dβ

− cos(mαt+ λm)
∞w

x
2a
√
t

e−β
2

sin
mαx2

4a2β2
dβ

]

and that as t increases u approaches the value

u =
1
2
b0 +

m=∞∑
m=1

ρme
− xa
√

mα
2 sin(mαt− x

a

√
mα

2
+ λm).

Given that
∞w

0

e−x
2

sin
b2

x2
dx =

√
π

2
e−b
√

2 sin b
√

2;
∞w

0

e−x
2

cos
b2

x2
dx =

√
π

2
e−b
√

2 cos b
√

2.

v. Riemann, Lin. par. dif. gl. § 54.

5. If we are dealing with a bar of small cross-section where the heat not
only flows along the bar but at the same time escapes at the surface of the bar
into air at the temperature zero we have to solve the differential equation

Dtu = a2D2
xu− b2u. v. Fourier, Heat § 105.

Show that for this case

u = e−(b2+a2α2)t sinαx and u = e−(b2+a2α2)t cosαx

are particular solutions, and that if u = f(x) when t = 0

u =
e−b

2t

2a
√
πt

∞w

−∞
e−

(λ−x)2

4a2t f(λ)dλ =
e−b

2t

√
π

∞w

−∞
e−β

2
f(x+ 2a

√
t.β)dβ.

cf. (8) and (9) Art. 49.
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If u = 0 when x = 0 and u = f(x) when t = 0

u =
e−b

2t

√
π

[ ∞w

− x
2a
√
t

e−β
2
f(x+ 2a

√
t.β)dβ −

∞w

x
2a
√
t

e−β
2
f(−x+ 2a

√
t.β)dβ

]
.

cf. (7) Art. 50.
If u = −e− bxa when t = 0 and u = 0 when x = 0

u =
1√
π

[
e
bx
a

∞w

x
2a
√
t

e−(b
√
t+β)2dβ − e− bxa

∞w

− x
2a
√
t

e−(b
√
t+β)2dβ

]
,

and if u = 1 when x = 0 and u = 0 when t = 0 we have only to add e−
bx
a to the

second member of the last equation, since u = e−
bx
a satisfies the equation

Dtu = a2D2
xu− b2u.

If u = F (t) when x = 0 and u = 0 when t = 0 we can employ the method of
Art. 51.

φ(x, t− λ) = e−
bx
a +

1√
π

[
e
bx
a

∞w

x
2a
√
t−λ

e−(b
√
t−λ+β)2dβ − e− bxa

∞w

− x
2a
√
t−λ

e−(b
√
t−λ+β)2dβ

]
,

−Dλφ(x, t− λ) =
x(t− λ)−

3
2

2a
√
π

e
−b2(t−λ)− x2

4a2(t−λ) ;

and u =
x

2a
√
π

tw

0

(t− λ)−
3
2 e
−b2(t−λ)− x2

4a2(t−λ)F (λ)dλ,

cf. (9) Art. 51,

or u =
2√
π

∞w

x
2a
√
t

e
−β2− b2x2

4a2β2 F

(
t− x2

4a2β2

)
dβ,

cf. (10) Art. 51.
If F (t) is periodic and has the value taken in Ex. 4, show that the value

approached by u as t increases is

u =
1
2
b0e
− bxa +

m=∞∑
m=1

ρme
− x
√

2
2a p sin

(
mαt− x

√
2

2a
q + λm

)
,

where p = (b2 +
√
b4 +m2α2)

1
2 and q = (−b2 +

√
b4 +m2α2)

1
2 .
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Given
∞w

0

e−x
2− a2

x2 dx =
√
π

2
e−2a

∞w

0

e−x
2− a2

x2 sin
b2

x2
dx =

√
π

2
e−2c sin 2d

and
∞w

0

e−x
2− a2

x2 cos
b2

x2
dx =

√
π

2
e−2c cos 2d,

where

c =
√

2
2

(a2 +
√
a4 + b4)

1
2 and d =

√
2

2
(−a2 +

√
a4 + b4)

1
2 .

Ängstrom’s method of determining the conductivity of a metal is based
on the result just given (v. Phil. Mag. Feb. 1863), and is described by Sir
Wm. Thomson (Encyc. Brit. Article “Heat”) as by far the best that has yet
been devised.

52. If u is a periodic function of the time when x = 0 as in Art. 51 Ex. 4
and we are concerned with the limiting value approached by u as t increases
we can avoid evaluating a complicated definite integral if we take the following
course.

Since as we have seen in Art. 49 u = eβt+αx is a solution of

Dtu = a2D2
xu (1)

provided only that β = a2α2 we have

u = eβt±
x
a

√
β

as a solution.
Replacing β by ±βi this becomes

u = e±βti±
x
a

√
β
√
±i

or u = e±βti±
x
a

√
β
2 (1±i)

since
√
i = ±1

2

√
2(1 + i)

and
√
−i = ±1

2

√
2(1− i).

Hence

u = e−
x
a

√
β
2 sin

(
βt− x

a

√
β

2

)
, u = e−

x
a

√
β
2 cos

(
βt− x

a

√
β

2

)
, (2)

u = e
x
a

√
β
2 sin

(
βt+

x

a

√
β

2

)
, u = e

x
a

√
β
2 cos

(
βt+

x

a

√
β

2

)
, (3)
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are particular solutions of (1).
From these we get readily

u = ρme
− xa
√

mα
2 sin

(
mαt− x

a

√
mα

2
+ λm

)
(4)

as a solution. (4) reduces to

u = ρm sin(mαt+ λm) when x = 0

and to u = ρme
− xa
√

mα
2 sin

(
λm −

x

a

√
mα

2

)
when t = 0.

If we add a term which satisfies (1) and which is equal to zero when x = 0

and to −ρme−
x
a

√
mα
2 sin

(
λm−

x

a

√
mα

2

)
when t = 0 (v. Art. 50) we shall have

a solution of (1) which is zero when t = 0 and which is

ρm sin(mαt+ λm) when x = 0.

The term in question approaches zero as t increases [v. (7) Art. 50] and we have
at once the solution given in Art. 51 Ex. 4, as our required result.

EXAMPLE.

Show that u = eβt+αx is a solution of Dtu = a2D2
xu− b2u if β = a2α2 − b2,

and hence that

u = eβt±
x
a

√
b2+β , u = e±βti±

x
a

√
b2±βi, u = e

±βti± x
a
√

2
(p±qi)

,

u = e
± px

a
√

2 sin
(
βt± qx

a
√

2

)
, and u = e

± px

a
√

2 cos
(
βt± qx

a
√

2

)
,

where
p = [

√
β2 + b4 + b2]

1
2 and q = [

√
β2 + b4 − b2]

1
2 ,

are solutions. Hence

u = ρme
− px

a
√

2 sin
(
βt− qx

a
√

2
+ λm

)
is a solution.

If β = mα this last result reduces to u = ρm sin(mαt+ λm) when x = 0 and
by the reasoning of Art. 52 it must be the value u approaches as t increases if
we have the same conditions as in the last part of Art. 51 Ex. 5.
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53. The whole problem of the flow of heat is treated by Sir William
Thomson (v. Math. and Phys. Papers, Vol. II), and other recent writers from a
different and decidedly interesting point of view, which we shall briefly sketch
in connection with the problem of Linear Flow.

Suppose we are dealing with a bar having a small cross-section and an
adiathermanous surface, and take as our unit of heat the amount required to
raise by a unit the temperature of a unit of length of the bar. If at a point
of the bar a quantity Q of heat is suddenly generated the point is called an
instantaneous heat source of strength Q.

If the heat instead of being suddenly generated is generated gradually and
at a rate that would give Q units of heat per unit of time the point is called a
permanent heat source of strength Q.

The temperature at any point of the bar at any time due to an instantaneous
source of strength Q at the point x = λ is easily found by the aid of formula (8)
Art. 49 as follows:—

If a quantity of heat Q is suddenly generated along the portion of the bar
from x = λ to x = λ+ ∆λ, where ∆λ is any arbitrary length, the temperature

of that portion will be suddenly raised to
Q

∆λ
, and we shall have by (8) Art. 49

u =
Q

2a
√
πt

1
∆λ

λ+∆λw

λ

e−
(λ−x)2

4a2t dλ (1)

as the temperature of any point of the bar at any time t thereafter.
If now we write u equal to the limiting value approached by the second

member of (1) as ∆λ is made to approach zero we get

u =
Q

2a
√
πt
e−

(λ−x)2

4a2t (2)

as the solution for the case where we have an instantaneous source at the point
x = λ.

It is to be observed that in (2) u = 0 when t = 0 and u =
Q

2a
√
πt

when

x = λ and t > 0.
If we have several sources we have only to add the temperatures due to the

separate sources.
Formula (8) Art. 49 may now be regarded as the solution for the case where

we start with an instantaneous heat source of strength f(λ)dλ in every element
of length of the bar.

A source of strength −Q is called a sink of strength Q; and (6) Art. 50 may be
regarded as the solution for the case where we have at the start an instantaneous
source of strength f(λ)dλ in every element of the bar whose distance to the right
of the origin is λ, and an instantaneous sink of strength f(λ)dλ in every element
of the bar whose distance to the left of the origin is λ.

If we have an instantaneous source at the origin (2) reduces to

u =
Q

2a
√
πt
e−

x2

4a2t (3)
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For a permanent source of constant strength Q at the origin (3) gives

u =
Q

2a
√
π

tw

0

e
− x2

4a2(t−τ) (t− τ)−
1
2 dτ (4)

and for a permanent source of variable strength f(t)

u =
1

2a
√
π

tw

0

e
− x2

4a2(t−τ) (t− τ)−
1
2 f(τ)dτ. (5)

In (4) and (5) u obviously reduces to zero when t = 0 and x > 0, but its value
when x = 0 is not easily determined. We can avoid the difficulty by introducing
the conception of a doublet.

54. If a source and a sink of equal strength Q are made to approach each
other while Q multiplied by their distance apart is kept equal to a constant P
the limiting state of things is said to be due to a doublet of strength P whose
axis is tangent to the line of approach and points from sink to source. A doublet
of strength −P differs from a doublet of strength P only in that its axis has the
opposite direction.

Let us find the temperature due to an instantaneous doublet of strength P
placed at the origin. For a source of strength Q at x = η and an equal sink at
x = −η we have

u =
Q

2a
√
πt

(e−
(η−x)2

4a2t − e−
(η+x)2

4a2t ),

or if 2ηQ = P ,

u =
P

4aη
√
πt
e−

(η2+x2)
4a2t (e

ηx

2a2t − e−
ηx

2a2t )

=
P

2aη
√
πt
e−

(η2+x2)
4a2t sinh

ηx

2a2t
.

If η is made to approach zero

limit
[

1
η

sinh
ηx

2a2t

]
=

x

2a2t
,

and u =
Px

4a3
√
πt3

e−
x2

4a2t (1)

is the solution for the temperature at any time and place due to an instantaneous
doublet of strength P placed at the origin. For a doublet at any other point
x = λ we have

u =
P (x− λ)
4a3
√
πt3

e−
(x−λ)2

4a2t . (2)
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For a permanent doublet of constant strength P placed at the origin we have

u =
Px

4a3
√
π

tw

0

e
− x2

4a2(t−τ) (t− τ)−
3
2 dτ ; (3)

and for a permanent doublet of variable strength f(t)

u =
x

4a3
√
π

tw

0

e
− x2

4a2(t−τ) (t− τ)−
3
2 f(τ)dτ, (4)

or u =
1

a2
√
π

∞w

x
2a
√
t

e−β
2
f

(
t− x2

4a2β2

)
dβ (5)

if x > 0, and

u =
1

a2
√
π

−∞w

x
2a
√
t

e−β
2
f

(
t− x2

4a2β2

)
dβ (6)

if x < 0, if we let β =
x

2a
√
t− τ

.

From (5) and (6) we see readily that u = 0 when t = 0 and that u =
f(t)
2a2

when x = 0 if we approach the origin from the right and that u = −f(t)
2a2

when
x = 0 if we approach the origin from the left.

If the point x = 0 is kept at the constant temperature b and we are concerned
only with positive values of x we can get from (5) the solution given in Art. 50
Ex. 4 by supposing a permanent doublet of strength 2a2b placed at the origin.

To solve the problem treated in Art. 51 we have only to suppose a permanent
doublet of strength 2a2F (t) placed at x = 0 and from (5) we get at once (10)
Art. 51.

EXAMPLE.

Show that if Dtu = a2D2
xu− b2u and an instantaneous source of strength Q

is placed at x = λ

u =
Q

2a
√
πt
e−b

2t− (λ−x)2

4a2t v. Art. 51, Ex. 5.

Show that if an instantaneous doublet of strength P is placed at the point
x = 0

u =
Px

4a3
√
πt3

e−b
2t− x2

4a2t .
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If a permanent doublet of strength f(t) is placed at x = 0

u =
x

4a3
√
π

tw

0

e
−b2(t−τ)− x2

4a2(t−τ) (t− τ)−
3
2 f(τ)dτ

=
1

a2
√
π

±∞w

x
2a
√
t

e
−β2− b2x2

4a2β2 f

(
t− x2

4a2β2

)
dβ,

whence u = 0 when t = 0 and x > 0 or x < 0 and u = ±f(t)
2a2

when x = 0.

Hence if we place at x = 0 a permanent doublet of strength 2a2F (t) we get
the solution given in Art. 51 Ex. 5 for the case where u = F (t) when x = 0 and
u = 0 when t = 0 provided we are concerned only with positive values of x.

If F (t) = c this reduces to

u =
2c√
π

∞w

x
2a
√
t

e
−β2− b2x2

4a2β2 dβ.

55. As another example of the use of Fourier’s Integral we shall consider
the transmission of a disturbance along a stretched elastic string.

Suppose we have a stretched elastic string so long that we need not consider
what happens at its ends, that is so long that we may treat its length as infinite.
Let the string be initially distorted into some given form and then released; to
investigate its subsequent motion.

Let us take the position of equilibrium of the string as the axis of X and
any given point as origin.

We have, then, to solve the differential equation

D2
t y = a2D2

xy (1)

[v. (VIII) Art. 1] subject to the conditions

y = f(x) when t = 0 (2)
Dty = 0 “ t = 0. (3)

As in Art. 8 we find

y = cosα(x± at) and y = sinα(x± at)

as particular solutions of (1).
From these we must build up a value that will reduce to

f(x) =
1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x).dλ (4)
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when t = 0 and will at the same time satisfy (3).

y = cosαλ cosα(x+ at) + sinαλ sinα(x+ at)
or y = cosα(λ− x− at)

is a solution of (1).

Hence y =
1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x− at).dλ (5)

is also a solution of (1).
(5) reduces to y = f(x) when t = 0 but it gives

Dty =
a

π

∞w

0

αdα

∞w

−∞
f(λ) sinα(λ− x).dλ

when t = 0 and consequently does not satisfy equation (3).
If in forming (5) we use cosα(x−at) and sinα(x−at) instead of cosα(x+at)

and sinα(x+ at) we get

y =
1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x+ at).dλ (6)

which is a solution of (1), and reduces to y = f(x) when t = 0, but it gives

Dty = − a
π

∞w

0

αdα

∞w

−∞
f(λ) sinα(λ− x).dλ

when t = 0 and does not satisfy (3).
If, however, we take one-half the sum of the values of y in (5) and (6) we get

y =
1
2

[
1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x− at).dλ

+
1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x+ at).dλ

]
, (7)

a solution of (1) which satisfies both (2) and (3), and is, therefore, our required
solution.

This result can be very much simplified.
If we substitute z = x+ at

1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x− at).dλ

=
1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− z).dλ = f(z) = f(x+ at);
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and in like manner we can show that

1
π

∞w

0

dα

∞w

−∞
f(λ) cosα(λ− x+ at).dλ = f(x− at).

Hence our solution becomes

y =
1
2

[f(x+ at) + f(x− at)]. (8)

This result is of great importance in the theory of elastic strings and it
shows that the initial disturbance splits into two equal waves which run along
the string, one to the right and the other to the left, with a uniform velocity a,
and that there is nothing like a periodic motion or vibration of any sort unless
the ends of the string produce some effect.

56. If the string is not initially distorted but starts from its position of
equilibrium with a given initial velocity impressed upon each point we have to
solve the equation

D2
t y = a2D2

xy (1)

subject to the conditions

y = 0 when t = 0 (2)
Dty = F (x) “ t= 0. (3)

We get by the process used in Art. 55

y =
1

2πa

∞w

0

dα

∞w

−∞
F (λ)

[
sinα(λ− x+ at)

α
− sinα(λ− x− at)

α

]
dλ

=
1

2πa

∞w

−∞
F (λ)dλ

∞w

0

[
sinα(λ− x+ at)

α
− sinα(λ− x− at)

α

]
dα;

but
∞w

0

sinα(λ− x+ at)
α

dα−
∞w

0

sinα(λ− x− at)
α

dα = π

if x− at < λ < x+ at, and is equal to zero for all other values of λ; since
∞w

0

sinmx
x

dx =
π

2
if m > 0

= −π
2

if m < 0

= 0 if m = 0.

v. Int. Cal. Art. 92 (3).

Hence y =
1
2a

x+atw

x−at
F (λ)dλ (4)

is our required solution.
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EXAMPLES.

1. If the string is initially distorted and starts with initial velocity so that
y = f(x) and Dty = F (x) when t = 0

y =
1
2

[f(x+ at) + f(x− at)] +
1
2a

x+atw

x−at
F (λ)dλ.

2. If the initial disturbance is caused by a blow, as from the hammer in a
piano, which impresses upon all the points in a portion of the string of length c
an equal transverse velocity b show that the front of the wave which will be seen
to run to the left along the string will be a straight line having a slope equal to
b

2a
and a length equal to

c

2a

√
4a2 + b2. Of course a wave having a front of the

same length with a slope equal to − b

2a
will be seen to run to the right along

the string, and the effect of the two waves will be to lift the string bodily and

permanently to a distance
bc

2a
above its original position.

57. We shall now take up a few examples of the use of Fourier’s Series.
In the problem of Art. 7 let the temperature of the base of the plate be a

given function of x, the other conditions remaining unchanged.

Since f(x) =
m=∞∑
m=1

(am sinmx)

where am =
2
π

πw

0

f(α) sinmα.dα

we have u =
2
π

m=∞∑
m=1

[
e−my sinmx

πw

0

f(α) sinmα.dα
]
. (1)

If the breadth of the plate is a instead of π

u =
2
a

m=∞∑
m=1

[
e−

mπy
a sin

mπx

a

aw

0

f(λ) sin
mπλ

a
dλ

]
. (2)

58. If the temperature of the base is unity and the breadth of the plate
is π the solution is, as we have seen in Art. 7,

u =
4
π

[
e−y sinx+

1
3
e−3y sin 3x+

1
5
e−5y sin 5x+ · · ·

]
. (1)

This series can be summed without difficulty. We have the development

log(1 + z) =
z

1
− z2

2
+
z3

3
− z4

4
+ · · ·
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if the modulus of z is less than 1. Int. Cal. Art. 221 (4).

Hence log(1− z) = −z
1
− z2

2
− z3

3
− z4

4
− · · ·

if mod. z < 1.

and
1
2

[log(1 + z)− log(1− z)] =
z

1
+
z3

3
+
z5

5
+ · · · (2)

if mod. z < 1.

But

log(1 + z) = log[1 + r(cosφ+ i sinφ)]

=
1
2

log[(1 + r cosφ)2 + (r sinφ)2] + i tan−1 r sinφ
1 + r cosφ

=
1
2

log (1 + 2r cosφ+ r2) + i tan−1 r sinφ
1 + r cosφ

,

and

log(1− z) =
1
2

log(1− 2r cosφ+ r2)− i tan−1 r sinφ
1− r cosφ

,

[Int. Cal. Art. 33 (2)],
and (2) becomes

1
2

[
1
2

log
1 + 2r cosφ+ r2

1− 2r cosφ+ r2
+ i tan−1 2r sinφ

1− r2

]
=
r(cosφ+ i sinφ)

1
+
r3(cos 3φ+ i sin 3φ)

3
+ · · · (3)

From (3) we get two equations

1
4

log
1 + 2r cosφ+ r2

1− 2r cosφ+ r2
=
r cosφ

1
+
r3 cos 3φ

3
+
r5 cos 5φ

5
+ · · · (4)

1
2

tan−1 2r sinφ
1− r2

=
r sinφ

1
+
r3 sin 3φ

3
+
r5 sin 5φ

5
+ · · · (5)

both valid for all values of φ provided r < 1.
e−y is less than 1 if y is positive.
Hence from (5)

e−y sinx
1

+
e−3y sin 3x

3
+
e−5y sin 5x

5
+ · · · = 1

2
tan−1 2e−y sinx

1− e−2y

=
1
2

tan−1 2 sinx
ey − e−y

=
1
2

tan−1 sinx
sinh y

,
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and (1) may be written

u =
2
π

tan−1 sinx
sinh y

. (6)

If we replace r by e−y and φ by x in

log[1 + r( cosφ+ i sinφ)]

it becomes log[1 + e−y cosx+ ie−y sinx]
or log[1+ cos z + i sin z]

v. Int. Cal. Art. 35 (3) and (4)
a function of z as a whole; and

log[1− r( cosφ+ i sinφ)]
becomes log(1− cos z − i sin z);

hence by Int. Cal. Arts. 212 and 213,
1
4

log
1 + 2e−y cosx+ e−2y

1− 2e−y cosx+ e−2y
and

1
2

tan−1 2e−y sinx
1− e−2y

or
1
4

log
cosh y + cosx
cosh y − cosx

and
1
2

tan−1 sinx
sinh y

are conjugate functions, and

u1 =
1
π

log
cosh y + cosx
cosh y − cosx

(7)

is the solution for the problem where the isothermal lines are the lines of flow of
the present problem and the lines of flow are the isothermal lines of the present
problem.

For our problem, then, the isothermal lines are given by the equation

2
π

tan−1 sinx
sinh y

= a

or
sinx
sinh y

= tan
aπ

2
(8)

and the lines of flow by

1
π

log
cosh y + cosx
cosh y − cosx

= b,

or
cosh y + cosx
cosh y − cosx

= eπb. (9)
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EXAMPLES.

1. If D2
xu + D2

yu = 0, and u = 1 when y = 0, and u = 0 when x = 0 and
when x = a,

u =
4
π

[
e−

πy
a sin

πx

a
+

1
3
e−

3πy
a sin

3πx
a

+
1
5
e−

5πy
a sin

5πx
a

+ · · ·
]

=
2
π

tan−1
sin

πx

a

sinh
πy

a

.

2. If u = φ(x) when y = 0, u = f(y) when x = 0, and u = F (y) when
x = a

u =
2
a

m=∞∑
m=1

e−
mπy
a sin

mπx

a

aw

0

φ(λ) sin
mπλ

a
dλ

+
1
2a

sin
πx

a

∞w

0

[
1

cosh
π

a
(λ− y)− cos

πx

a

− 1

cosh
π

a
(λ+ y)− cos

πx

a

]
f(λ) dλ

+
1
2a

sin
πx

a

∞w

0

[
1

cosh
π

a
(λ− y) + cos

πx

a

− 1

cosh
π

a
(λ+ y) + cos

πx

a

]
F (λ) dλ

v. Art. 48, Exs. 4, 5, and 6.

59. If three sides of a plane rectangular sheet of conducting material be
kept at potential zero and the value of the potential function at every point of
the fourth side be given; to find the value of this potential function at any point
of the sheet.

To formulate:—

D2
xV+ D2

yV = 0. (1)

V = 0 when x = 0. (2)
V = 0 “ x = a. (3)
V = 0 “ y = b. (4)
V = f(x) “ y = 0. (5)

Working as in Art. 48 we get

sinh
mπ

a
(b− y)

sinh
mπb

a

sin
mπx

a

as a value of V which satisfies equations (1), (2), (3), and (4) if m is an integer.
Therefore

V =
2
a

m=∞∑
m=1

[ sinh
mπ

a
(b− y)

sinh
mπb

a

sin
mπx

a

aw

0

f(λ) sin
mπλ

a
dλ

]
(6)
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is our required solution.

EXAMPLES.

1. If f(x) = 1 Eq. (6) Art. 59 reduces to

V =
4
π

[
sinh

π

a
(b− y)

sinh
πb

a

sin
πx

a
+

1
3

sinh
3π
a

(b− y)

sinh
3πb
a

sin
3πx
a

+
1
5

sinh
5π
a

(b− y)

sinh
5πb
a

sin
5πx
a

+ · · ·

]

2. If V = 0 when x = 0, V = 0 when x = a, V = 0 when y = 0, and
V = F (x) when y = b, then

V =
2
a

m=∞∑
m=1

[
sinh

mπy

a

sinh
mπb

a

sin
mπx

a

aw

0

F (λ) sin
mπλ

a
dλ

]
.

3. If F (x) = 1 the answer of Ex. 2 reduces to

V =
4
π

[
sinh

πy

a

sinh
πb

a

sin
πx

a
+

1
3

sinh
3πy
a

sinh
3πb
a

sin
3πx
a

+
1
5

sinh
5πy
a

sinh
5πb
a

sin
5πx
a

+ · · ·

]
.

4. If V = 0 when x = 0, V = 0 when x = a, V = f(x) when y = 0, and
V = F (x) when y = b, then

V =
2
a

m=∞∑
m=1

[
sin

mπx

a

(
sinh

mπ

a
(b− y)

sinh
mπb

a

aw

0

f(λ) sin
mπλ

a
dλ

+
sinh

mπy

a

sinh
mπb

a

aw

0

F (λ) sin
mπλ

a
dλ

)]
.

5. If f(x) = F (x) the answer of Ex. 4 reduces to

V =
2
a

m=∞∑
m=1

[
cosh

mπ

a

( b
2
− y
)

cosh
mπb

2a

sin
mπx

a

aw

0

f(λ) sin
mπλ

a
dλ

]
.
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6. If f(x) = F (x) = 1 the answer of Ex. 5 reduces to

V =
4
π

[
cosh

π

a

( b
2
− y
)

cosh
πb

2a

sin
πx

a
+

1
3

cosh
3π
a

( b
2
− y
)

cosh
3πb
2a

sin
3πx
a

+
1
5

cosh
5π
a

( b
2
− y
)

cosh
5πb
2a

sin
5πx
a

+ · · ·

]
.

7. If V = f(x) when y = 0, V = F (x) when y = b, V = φ(y) when x = 0,
and V = χ(y) when x = a, then

V =
2
a

m=∞∑
m=1

[
sin

mπx

a

(
sinh

mπ

a
(b− y)

sinh
mπb

a

aw

0

f(λ) sin
mπλ

a
dλ

+
sinh

mπy

a

sinh
mπb

a

aw

0

F (λ) sin
mπλ

a
dλ

)]

+
2
b

m=∞∑
m=1

[
sin

mπy

b

(
sinh

mπ

b
(a− x)

sinh
mπa

b

bw

0

φ(λ) sin
mπλ

b
dλ

+
sinh

mπx

b

sinh
mπa

b

bw

0

χ(λ) sin
mπλ

b
dλ

)]
.

8. If f(x) = φ(y) = 0 and F (x) = χ(y) = 1 the answer of Ex. 7 may be
reduced to

V =
2
π

[
πy

2b
−

sinh
π

b

(a
2
− x
)

sinh
πa

2b

sin
πy

b
+

1
2

cosh
2π
b

(a
2
− x
)

cosh
2πa
2b

sin
2πy
b

− 1
3

sinh
3π
b

(a
2
− x
)

sinh
3πa
2b

sin
3πy
b

+
1
4

cosh
4π
b

(a
2
− x
)

cosh
4πa
2b

sin
4πy
b
− · · ·

]
.

9. Find the temperature of the middle point of a thin square plate whose
faces are impervious to heat; 1st, when three edges are kept at the temperature
0◦ and the fourth edge at the temperature 100◦; 2d, when two opposite edges
are kept at the temperature 0◦ and the other two at the temperature 100◦; 3d,
when two adjacent edges are kept at the temperature 0◦ and the other edges at
the temperature 100◦. See examples 3, 6, and 8.

Ans., (1) 25◦; (2) 50◦; (3) 50◦.
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60. Let us pass on to the consideration of the flow of heat in one dimen-
sion.

Suppose that we have an infinite solid with two parallel plane faces whose
distance apart is c.

Take the origin in one face and the axis of X perpendicular to the faces. Let
the initial temperature be any given function of x and let the two faces be kept
at the constant temperature zero; to find the temperature at any point of the
slab at any time.

We have to solve the equation

Dtu = a2D2
xu (1)

subject to the conditions

u = 0 when x = 0 (2)
u = 0 “ x = c (3)
u = f(x) “ t = 0. (4)

In Art. 49 we have found

u = e−a
2α2t sinαx

and u = e−a
2α2t cosαx

as particular solutions of (1).
u = e−a

2α2t sinαx satisfies (2) whatever value is given to α. It satisfies (3) if
α =

mπ

c
provided m is an integer. Let us try to build a value of u out of terms

of the form Ae−
a2m2π2t

c2 sin
mπx

c
which shall satisfy (4).

We have

f(x) =
2
c

m=∞∑
m=1

[
sin

mπx

c

cw

0

f(λ) sin
mπλ

c
dλ
]
. (5)

u =
2
c

m=∞∑
m=1

[
e−

m2a2π2t
c2 sin

mπx

c

cw

0

f(λ) sin
mπλ

c
dλ
]
, (6)

reduces to (5) when t = 0 and is our required solution.

EXAMPLES.

1. If f(λ) = b, a constant, (6) Art. 60 reduces to

u =
4b
π

[
e−

a2π2t
c2 sin

πx

c
+

1
3
e−

9a2π2t
c2 sin

3πx
c

+
1
5
e−

25π2a2t
c2 sin

5πx
c

+ · · ·
]
.

2. An iron slab 10 cm. thick is placed between and in contact with two
other iron slabs each 10 cm. thick. The temperature of the middle slab is at
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first 100◦ throughout, and of the outside slabs 0◦ throughout. The outer faces
of the outside slabs are kept at the temperature 0◦. Required the temperature
of a point in the middle of the middle slab fifteen minutes after the slabs have
been placed in contact. Given a2 = 0.185 in C.G.S. units. Ans., 10◦.3.

3. Two iron slabs each 20 cm. thick one of which is at the temperature 0◦

and the other at the temperature 100◦ throughout, are placed together face to
face, and their outer faces are kept at the temperature 0◦. Find the temperature
of a point in their common face and of points 10 cm. from the common face
fifteen minutes after the slabs have been put together.

Ans., 22◦.8; 15◦.1; 17◦.2.

4. One face of an iron slab 40 cm. thick is kept at the temperature 0◦ and
the other face at the temperature 100◦ until the permanent state of tempera-
tures is set up. Each face is then kept at the temperature 0◦. Required the
temperature of a point in the middle of the slab, and of points 10 cm. from the
faces fifteen minutes after the cooling has begun. Ans., 22◦.8; 15◦.6; 16◦.7.

61. If the faces of the slab treated in Art. 60 instead of being kept at the
temperature zero are rendered impervious to heat, the solution of the problem
is easy.

In this case we have to solve the equation

Dtu = a2D2
xu

subject to the conditions

Dxu = 0 when x = 0
Dxu = 0 “ x = c

u = f(x) “ t = 0.

We have only to use the particular solution

u = e−a
2α2t cosαx

as we used u = e−a
2α2t sinαx

in Art. 60. We get

u =
2
c

[
1
2

cw

0

f(λ)dλ+
m=∞∑
m=1

(
e−

m2a2π2t
c2 cos

mπx

c

cw

0

f(λ) cos
mπλ

c
dλ
)]
. (1)
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EXAMPLES.

1. Solve example 2 Art. 60 supposing that the outer surfaces are blanketed
after the slabs are placed together so that heat can neither enter nor escape.
Find in addition the temperature of the outer surfaces fifteen minutes after the
slabs are placed in contact. Ans., 33◦.3; 33◦.3.

2. Solve example 3 Art. 60 on the hypothesis just stated, getting in addi-
tion the temperatures of points on the outer surfaces.

Ans., 50◦; 33◦.9; 66◦.1; 27◦.2; 72◦.8.

3. Solve example 4 Art. 60 supposing that heat neither enters nor escapes
at the outer surfaces after the permanent state of temperatures has been set up.
Find also the temperatures of points in the outer surfaces.

Ans., 50◦; 39◦.7; 60◦.3; 35◦.5; 64◦.5.

4. Show that if u = 0 when x = 0, Dxu = 0 when x = c, and u = f(x)
when t = 0,

u =
2
c

m=∞∑
m=0

(
e−

(2m+1)2a2π2t
4c2 sin

(2m+ 1)πx
2c

cw

0

f(λ) sin
(2m+ 1)πλ

2c
dλ

)
.

Suggestion: Assume u = 0 when x = 2c and f(2c − x) = f(x), and see (6)
Art. 60.

62. If the temperature of the right-hand face of the slab considered in
Art. 60 is a constant γ instead of zero we have only to add to the second
member of (6) Art. 60 a term u1 which shall satisfy the conditions

Dtu1 = a2D2
xu1 (1)

u1 = 0 when x = 0 (2)
u1 = 0 “ t = 0 (3)
u1 = γ “ x = c. (4)

u1 =
γx

c
obviously satisfies (1), (2), and (4); to make it satisfy (3) as well

we must add a term u2 which shall be equal to zero when x = 0 and when x = c

and to −γx
c

when t = 0, while always satisfying (1). It is given immediately by

(6) Art. 60 and is

u2 = −2γ
c2

m=∞∑
m=1

(
e−

m2a2π2t
c2 sin

mπx

c

cw

0

λ sin
mπλ

c
dλ

)
. (5)

cw

0

λ sin
mπλ

c
dλ = − c2

mπ
cosmπ = (−1)m+1 c

2

mπ
,



SOLUTION OF PROBLEMS IN PHYSICS. 109

and u2 =
2γ
π

m=∞∑
m=1

(
(−1)m

m
e−

m2a2π2t
c2 sin

mπx

c

)
. (6)

Hence u1 = γ

[
x

c
+

2
π

m=∞∑
m=1

(
(−1)m

m
e−

m2a2π2t
c2 sin

mπx

c

)]
. (7)

If the left-hand face of the slab considered in Art. 60 is to be kept at a
constant temperature β and the right-hand face at the temperature zero we can
get the term u3 which must be added to the second member of (6) Art. 60 by
replacing γ by β and x by c− x in (7). We then have

u3 = β

[
c− x
c
− 2
π

m=∞∑
m=1

(
1
m
e−

m2a2π2t
c2 sin

mπx

c

)]
. (8)

EXAMPLES.

1. Show that if u = β when x = 0, u = γ when x = c, and u = f(x) when
t = 0

u = β + (γ − β)
[
x

c
+

2
π

m=∞∑
m=1

(
(−1)m

m
e−

m2π2a2t
c2 sin

mπx

c

)]

+
2
c

m=∞∑
m=1

(
e−

m2a2π2t
c2 sin

mπx

c

cw

0

[f(λ)− β] sin
mπλ

c
dλ

)
.

2. Show that if u = β when x = 0, u = 0 when t = 0, and Dxu = 0 when
x = c

u = β

[
1− 4

π

m=∞∑
m=0

(
1

2m+ 1
e−

(2m+1)2a2π2t
4c2 sin

(2m+ 1)πx
2c

)]
= β

[
1− 4

π

(
e−

a2π2t
4c2 sin

πx

2c
+

1
3
e−

9a2π2t
4c2 sin

3πx
2c

+
1
5
e−

25a2π2t
4c2 sin

5πx
2c

+ · · ·
)]

.

63. If the temperature of the right-hand face of the slab just considered is
a function of the time instead of a constant and the temperature of the left-hand
face is zero the problem can be solved by a method nearly identical with that
of Art. 51.

Let φ(x, t) be a function of x and t which shall be zero if t is less than zero
and shall be equal to

x

c
+

2
π

m=∞∑
m=1

(
(−1)m

m
e−

m2a2π2t
c2 sin

mπx

c

)
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[v. (7) Art. 62] if t is equal to or greater than zero. So that

φ(x, t) = 0 if t < 0
φ(x, t) = 0 “ t = 0 unless x = c

φ(x, t) = 1 “ t = 0 and x = c

φ(x, t) = 1 “ x = c

φ(x, t) = 0 “ x = 0.

Precisely as in Art. 51 we get

u = limit
τ
.
=0

k=n∑
k=0

[
F (kτ)

[φ(x, t− kτ)− φ(x, t− (k + 1)τ)]τ
τ

]
(1)

as the required solution of our problem, n being as in Art. 51 the largest integer

in
t

τ
where t is any given value of the time.

On our hypothesis the last term of (1), that is, −F (nτ)φ[x, t− (n+1)τ ] = 0;
the next to the last term F (nτ)φ(x, t− nτ) has for its limiting value

F (t)φ(x, 0) = F (t)

[
x

c
+

2
π

m=∞∑
m=1

(
(−1)m

m
sin

mπx

c

)]
,

while as in Art. 51 the limiting value of the rest of the sum is

−
tw

0

F (λ)Dλφ(x, t− λ)dλ.

Dλφ(x, t− λ) =
2a2π

c2

m=∞∑
m=1

[
(−1)mme−

m2a2π2

c2
(t−λ) sin

mπx

c

]
.

Hence

u = F (t)
[
x

c
+

2
π

m=∞∑
m=1

(
(−1)m

m
sin

mπx

c

)]

− 2a2π

c2

m=∞∑
m=1

(
(−1)mm sin

mπx

c

tw

0

F (λ)e−
m2a2π2

c2
(t−λ)dλ

)
,

u =
x

c
F (t) +

2
π

m=∞∑
m=1

[
(−1)m

m
sin

mπx

c

(
F (t)

− m2a2π2

c2

tw

0

F (λ)e−
m2a2π2

c2
(t−λ)dλ

)]
. (2)
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If we substitute β =
m2a2π2

c2
(t− λ) we get

u =
x

c
F (t)+

2
π

m=∞∑
m=1

[
(−1)m

m
sin

mπx

c

(
F (t)−

m2a2π2t
c2w

0

e−βF

(
t− βc2

m2a2π2

)
dβ

)]
. (3)

EXAMPLES.

1. If the temperature of the left-hand face is a function of t and the tem-
perature of the right-hand face is zero and the initial temperature is zero

u =
(

1− x

c

)
F (t)− 2

π

m=∞∑
m=1

[
1
m

sin
mπx

c

(
F (t)−

m2a2π2t
c2w

0

e−βF

(
t− βc2

m2a2π2

)
dβ

)]
.

2. If the temperature of the left-hand face is a function of t, the initial
temperature is zero, and the right-hand face is impervious to heat

u = F (t)− 4
π

m=∞∑
m=0

[
1

2m+ 1
sin

(2m+ 1)πx
2c

(
F (t)

− (2m+ 1)2a2π2

4c2

tw

0

F (λ)e−
(2m+1)2a2π2

4c2
(t−λ)dλ

)]
.

3. If in Arts. 60–63 we are dealing with a bar of small cross-section and of
length c and heat is radiating from the surface of the bar into air at the temper-
ature zero so that Dtu = a2D2

xu − b2u, show that: (a) the second members of
(6) Art. 60 and (1) Art. 61 must be multiplied by e−b

2t; (b) equation (7) Art. 62
becomes

u1 = γ

{
sinh

bx

a

sinh
bc

a

+2a2πe−b
2t
m=∞∑
m=1

[
(−1)m

m

b2c2 +m2a2π2
e−

m2a2π2t
c2 sin

mπx

c

]}
;

(c) equation (2) Art. 63 becomes

u =
sinh

bx

a

sinh
bc

a

F (t) + 2a2π

m=∞∑
m=1

{
(−1)mm

b2c2 +m2a2π2
sin

mπx

c

[
F (t)

− b2c2 +m2a2π2

c2

tw

0

e−
b2c2+m2a2π2

c2
(t−λ)F (λ)dλ

]}
.
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64. The problem of the motion of a finite stretched elastic string of length
l fastened at the ends and distorted at first into some given curve y = f(x), and
then allowed to swing, has been treated and partially solved in Art. 8.

The complete solution is easily seen to be

y =
2
l

m=∞∑
m=1

sin
mπx

l
cos

mπat

l

lw

0

f(λ) sin
mπλ

l
dλ. (1)

The second member of (1) is a periodic function of t having the period
2l
a

.

The motion, then, unlike that in the case of an infinite string (Art. 55) is a true

vibration, a periodic motion. The period
2l
a

is the time it takes a disturbance

to travel twice the length of the string (v. Art. 55).
A careful examination of (1) will show that the actual motion is a good deal

like that in the case considered in Art. 55. The original disturbance breaks up
into two waves one of which runs to the right until it reaches the end of the
string and is then reflected, and runs back to the left or the under side of the
string, while the other wave runs to the left and is reflected at the left-hand end
of the string and runs back to the right under the string and is again reflected,
runs back to the left over the string and so on indefinitely.

If the curve into which the string is distorted at the start is of the form
y = b sin

mπx

l
the solution is

y = b sin
mπx

l
cos

mπat

l
. (2)

No matter what value t may have the curve is always of the form

y = A sin
mπx

l
;

that is, for different values of t we have a set of sine curves differing only in
the amplitude and not at all in the period of the curve. In this case either the
whole string if m = 1, or each mth of the string if m is not equal to one, rises
and falls, and there is no apparent onward motion. When this is the case we
are said to have a steady vibration.

If m = 1 we get steady motion of the string as a whole and if the vibration is
rapid enough to give a musical note the note is said to be the pure fundamental
note of the string. If m = 2 the vibration is twice as rapid as when m = 1, the
middle point of the string does not move and is called a node, the two halves
of the string are in opposite phases of vibration at any instant, and the note
given is an octave higher than the fundamental note and is called its pure first
harmonic.

If m = 3 the vibration is three times as rapid as in the first case, there are

two nodes x =
l

3
and x =

2l
3

, and the note is the pure second harmonic of the
fundamental note.
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For any value of m the vibration is m times as rapid as when m = 1, there

are m− 1 nodes at the points x =
l

m
, x =

2l
m
, · · ·x =

m− 1
m

l, and we get the
m− 1st harmonic of the fundamental note.

It is clear from (1) that no matter what the original form of the string
the resulting vibration can be regarded as a combination of steady vibrations
each of which alone would give the fundamental note of the string or one of
its harmonics, and that the complex note resulting is really a concord of the
fundamental note and some of its harmonics.

A finely trained ear can often recognize in a complex note the fundamental
note of the string and some of its harmonics and is capable of analyzing a
complex note into its component pure notes precisely as Fourier’s Theorem
enables us to analyze the complex function representing the initial form of the
string into the simpler sine-functions which must be combined to form it.

EXAMPLES.

1. Show that if a point whose distance from the end of a harp string is
1
n

th
the length of the string is drawn aside by the player’s finger to a distance b from
its position of equilibrium and then released, the form of the vibrating string at
any instant is given by the equation

y =
2bn2

(n− 1)π2

m=∞∑
m=1

(
1
m2

sin
mπ

n
sin

mπx

l
cos

mπat

l

)
.

Show from this that all the harmonics of the fundamental note of the string
which correspond to forms of vibration having nodes at the point drawn aside
by the finger will be wanting in the complex note actually sounded.

2. If a stretched string starts from its position of equilibrium, each of its
points having a given initial velocity, so that we have

y = 0 when t = 0
Dty = F (x) “ t = 0
y = 0 “ x = 0
y = 0 “ x = l,

the solution of the problem of its vibration is easy and gives

y =
2
aπ

m=∞∑
m=1

(
1
m

sin
mπx

l
sin

mπat

l

lw

0

F (λ) sin
mπλ

l
dλ

)
.

3. Write down the solution for the case where the string is initially distorted
and each point has a given initial velocity.
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65. If we do not neglect the resistance of the air in the problem of the
vibration of a stretched string the differential equation is rather more compli-
cated and the solution is not so easily obtained. The equation is given as (IX)
Art. 1.

Let us solve the problem for the case where there is no initial velocity.

Here we have D2
t y + 2kDty = a2D2

xy. (1)

y = 0 when x = 0 (2)
y = 0 “ x = l (3)
y = f(x) “ t = 0 (4)

Dty = 0 “ t = 0. (5)

We get particular solutions of (1) in the usual way. Assume y = eαx+βt and
substitute in (1). We have

β2 + 2kβ = a2α2

as the only necessary relation between β and α. This gives

β = −k ±
√
a2α2 + k2.

Hence y = eαx−kt±t
√
a2α2+k2

(6)

is a solution of (1) no matter what the value of α.
To throw it into Trigonometric form replace α by αi, and since in actual

problems k, which is proportional to the resistance, is very small, take −1 out
as a factor of the radical. We have

y = e−kte(αx±t
√
a2α2−k2)i.

Since α may be positive or negative we can get

y = e−kt sin(αx± t
√
a2α2 − k2)

and y = e−kt cos(αx± t
√
a2α2 − k2)

as solutions of (1), or by combining these

y = e−kt sinαx cos t
√
a2α2 − k2 (7)

y = e−kt sinαx sin t
√
a2α2 − k2 (8)

y = e−kt cosαx cos t
√
a2α2 − k2 (9)

y = e−kt cosαx sin t
√
a2α2 − k2 (10)

(7) and (8) satisfy (1) and (2) for all values of α. They satisfy (3) if α =
mπ

l
.

Let us see if out of them we cannot build up a value that will satisfy (4) and
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(5) as well.

f(x) =
2
l

m=∞∑
m=1

(
sin

mπx

l

lw

0

f(λ) sin
mπλ

l
dλ

)
. (11)

y =
2
l
e−kt

m=∞∑
m=1

(
sin

mπx

l
cos t

√
m2π2a2

l2
− k2.

lw

0

f(λ) sin
mπλ

l
dλ

)
(12)

reduces to (11) when t = 0 and therefore satisfies (4).

Dty =− 2
lekt

m=∞∑
m=1

(√
m2π2a2

l2
− k2. sin

mπx

l
sin t

√
m2π2a2

l2
− k2

.

lw

0

f(λ) sin
mπλ

l
dλ

)

− 2k
lekt

m=∞∑
m=1

(
sin

mπx

l
cos t

√
m2π2a2

l2
− k2.

lw

0

f(λ) sin
mπλ

l
dλ

)
. (13)

When t = 0 the first line of the second member of (13) vanishes but the
second line reduces to

−2k
l

m=∞∑
m=1

(
sin

mπx

l

lw

0

f(λ) sin
mπλ

l
dλ

)
.

We must, then, introduce into (12) an additional term which shall equal zero
when t = 0 and whose derivative with respect to t shall cancel the term above
when t = 0.

This is easily seen to be

2k
l
e−kt

m=∞∑
m=1

1√
m2π2a2

l2
− k2

sin
mπx

l
sin t

√
m2π2a2

l2
− k2.

lw

0

f(λ) sin
mπλ

l
dλ.

Hence our complete solution is

y =
2
l
e−kt

m=∞∑
m=1

[(
cos t

√
m2π2a2

l2
− k2

+
k√

m2π2a2

l2
− k2

sin t

√
m2π2a2

l2
− k2

)
sin

mπx

l

lw

0

f(λ) sin
mπλ

l
dλ

]
. (14)

Here the fact that e−kt, which decreases rapidly as t increases, is a factor
of the whole second member shows that the amplitude of the vibration rapidly
decreases.
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Comparing this solution with that given in Art. 64 for the case where there
is no resistance we see that the period of any given term

A sin
mπx

l
cos t

√
m2π2a2

l2
− k2,

is greater than that of the corresponding term A1 sin
mπx

l
cos

mπat

l
in Art. 64.

In other words the effect of the resistance of the air is to flatten somewhat
each component part of the note given by the string. More than this since the
periods of the different terms of (14) are no longer exact submultiples of the
period of the first term, the component notes are no longer in perfect harmony
with the fundamental note of the string, and the ideal perfect harmony between
the fundamental note and its harmonics is not quite realized in any actual case.

When k is very small, as in the case of a fine string, the departure from
perfect harmony is very slight; but in the case of a coarse string or worse still of
an elastic ribbon, where the resistance of the air is considerable, the unmusical
character of the sound is very noticeable.

EXAMPLES.

1. Solve Ex. 1 Art. 64 allowing for the resistance of the air.

2. Solve Ex. 2 Art. 64 allowing for the resistance of the air;

y =
2
l
e−kt

m=∞∑
m=1

(
1√

m2π2a2

l2
− k2

sin
mπx

l
sin t

√
m2π2a2

l2
− k2

.

lw

0

F (λ) sin
mπλ

l
dλ

)
.

3. Find a particular solution of (1) Art. 65 on the assumption that it is of
the form y = T.X, where T is a function of t alone and X a function of x alone.

66. We pass on now to a couple of problems that require the modification
and extension of Fourier’s Theorem, the cooling of a sphere in air, and the
vibration of a stretched rectangular membrane, but as an introduction to the
former we shall first consider the following very simple problem; to find the
temperature of any point of a sphere whose initial temperature is any given
function of r the distance of the point from the centre, and whose surface is
kept at the constant temperature b.

Here we are to solve
Dt(ru) = a2D2

r(ru), (1)

see [V] Art. 1, subject to the conditions

u = f(r) when t = 0 (2)
u = b “ r = c (3)
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if c is the radius.
Let v = ru, then our equations become

Dtv = a2D2
rv (4)

v = rf(r) when t = 0 (5)
v = bc “ r = c (6)
v = 0 “ r = 0. (7)

Our problem is now precisely that of Art. 62 and we have as our solution

ru =
2
c

m=∞∑
m=1

(
e−

m2a2π2

c2
t sin

mπr

c

cw

0

λf(λ) sin
mπλ

c
dλ

)

+ b

[
r +

2c
π

m=∞∑
m=1

(
(−1)m

m
e−

m2a2π2

c2
t sin

mπr

c

)]
. (8)

EXAMPLES.

1. If f(r) = b (8) Art. 66 reduces to u = b and there is no change of
temperature.

2. If the initial temperature is constant and equal to β

u = b+
2c
πr

(β − b)
[
e−

a2π2

c2
t sin

πr

c
− 1

2
e−

4a2π2

c2
t sin

2πr
c

+
1
3
e−

9a2π2

c2
t sin

3πr
c
− · · ·

]
.

3. An iron sphere 40 cm. in diameter is heated to the temperature 100◦

centigrade throughout; its surface is then kept at the constant temperature 0◦.
Find the temperature of a point 10 cm. from the centre, and find the temperature
of the centre, 15 minutes after cooling has begun. Given a2 = 0.185 in C.G.S.
units. Ans., 2◦.1; 3◦.3.

67. If instead of having the temperature of the surface of the sphere con-
stant, the sphere is placed in air which is kept at the constant temperature zero,
the problem is much more complicated. For in this case the surface temperature
can no longer be simply expressed but is given by a new differential equation

Dru+ hu = 0 when r = c, (1)

where h is an experimental constant depending upon what is called the surface
conductivity of the sphere.

Our equations, then, are

Dt(ru) = a2D2
r(ru) (2)

u = f(r) when t = 0 (3)
Dru+ hu = 0 when r = c. (4)
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As in Art. 66 let v = ru; then we have

Dtv = a2D2
rv (5)

v = rf(r) when t = 0 (6)
v = 0 “ r = 0 (7)

Drv +
(
h− 1

c

)
v = 0 when r = c. (8)

v = e−a
2α2t cosαr and v = e−a

2α2t sinαr have already been found as partic-
ular solutions of (5) (see Art. 60).

v = e−a
2α2t sinαr (9)

satisfies (7) for all values of α.
Substitute this value of v in (8) and we have

αc cosαc+ (hc− 1) sinαc = 0. (10)

If αk is a value of α which is a root of the transcendental equation (10)

v = e−a
2α2
kt sinαkr (11)

will satisfy (5), (7), and (8).
It remains to see whether out of terms of the form given in (11) we can build

up a value of v which will satisfy (6).
When t = 0 the second member of (11) reduces to sinαkr. If then we can

express rf(r) as a sum of terms of the form bk sinαkr where αk is a root of (10)

v =
∑

bke
−a2α2

kt sinαkr (12)

will satisfy all of the equations (5), (6), (7), and (8), and will be the required
solution.

Here, then, we have a new problem analogous to that of developing in a
Fourier’s Series, but rather more complicated, namely, to develop any function
of x in a series of the form

∑
am sinαmx where αm is a root of the equation

(10); or if we call ac = φ and hc− 1 = p, where am =
φm
c

, φm being a root of
the equation

φ cosφ+ p sinφ = 0 (13)

or more simply of

φ+ p tanφ = 0; (14)

remembering that the series and the function must be equal for all values of x
between zero and c.
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If φm is a root of (14) −φm is also a root.

Since sin
φm
c
x = − sin

(
−φm

c
x

)
the terms of the required development

which correspond to negative roots may be combined with those corresponding
to positive roots, and therefore we need consider only positive roots.

φ = 0 is a root of (14) but as sin 0 = 0 there will be no corresponding term
in the development. If we construct the curve

y = −1
p
x (15)

and the curve

y = tanx (16)

the abscissas of their points of intersection are values of x which satisfy
x

p
+

tanx = 0, that is, are roots of equation (14). It is easy to see that there will
always be an infinite number of real positive roots, one for each of the branches
of the periodic curve y = tanx which lie to the right of the origin. The numerical
values of these roots can be obtained by an easy computation. The construction
suggested above shows that as m increases φm will rapidly approach the value
(2m−1)

π

2
if p is positive or if p is negative and numerically less than unity, and

(2m+ 1)
π

2
if p is negative and numerically greater than unity.

There exist, then, an infinite number of positive real roots of φ+ p tanφ = 0
and consequently of

αc cosαc+ (hc− 1) sinαc = 0.

68. The development called for in the last article can be obtained very
easily from a simpler one which we shall now consider, namely, to develop f(x)
into a series of the form

f(x) = a1 sinφ1x+ a2 sinφ2x+ a3 sinφ3x+ · · · (1)

where φ1, φ2, φ3 · · · are roots of the equation

φ cosφ+ p sinφ = 0, (2)

the development to hold good for all values of x between x = 0 and x = 1.

Let us proceed as in Arts. 24 and 27. Call
1

n+ 1
= ∆x and form n equations

by substituting for x in turn in the equation

f(x) = a1 sinφ1x+ a2 sinφ2x+ a3 sinφ3x+ · · ·+ an sinφnx (3)
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the values ∆x, 2∆x, 3∆x, · · ·n∆x; this being equivalent to making the values
of the sum and the function coincide for the n values of x substituted.

To determine any coefficient am multiply the first equation by ∆x. sin(φm
∆x), the second by ∆x. sin(2φm∆x), the third by ∆x. sin(3φm∆x), and so on,
the nth equation by ∆x. sin(nφm∆x); add the equations and compute the lim-
iting values of the terms of the resulting equation as n is indefinitely increased.
This as in Art. 24 is seen to be equivalent to multiplying (3) by sinφmx.dx and
integrating between the limits x = 0 and x = 1.

The first member of the resulting equation is

1w

0

f(x) sinφmx.dx;

The coefficient of ak is

1w

0

sinφkx sinφmx.dx,

and of am is
1w

0

sin2 φmx.dx.

1w

0

sinφkx sinφmx.dx =
1
2

1w

0

[cos(φk − φm)x− cos(φk + φm)x]dx

=
1
2

[
sin(φk − φm)
φk − φm

− sin(φk + φm)
φk + φm

]
= −φk cosφk sinφm − φm sinφk cosφm

φ2
k − φ2

m

(4)

But φk cosφk + p sinφk = 0
and φm cosφm + p sinφm = 0 by (2).

Hence the numerator of the second member of (4) is zero, and the coefficient
of ak vanishes if k is not equal to m.

1w

0

sin2 φmx.dx =
1

2φm
[φm − sinφm cosφm] =

1
2

[
1− sin 2φm

2φm

]
. (5)

Therefore am =
2

1− sin 2φm
2φm

1w

0

f(x) sinφmx.dx. (6)
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The coefficient of the integral in (6) can be transformed as follows so as not
to involve trigonometric functions.

φm cosφm + p sinφm = 0, by (2)

φm cos2 φm +
p

2
sin 2φm = 0,

sin 2φm
2φm

= −cos2 φm
p

. (7)

φ2
m cos2 φm = p2 sin2 φm,

(φ2
m + p2) cos2 φm = p2,

cos2 φm
p

=
p

φ2
m + p2

. (8)

Hence by (7) and (8)

1− sin 2φm
2φm

=
φ2
m + p(p+ 1)
φ2
m + p2

,

and am =
2(φ2

m + p2)
φ2
m + p(p+ 1)

1w

0

f(α) sinφmα.dα. (9)

Therefore our required development is

f(x) =
m=∞∑
m=1

(
2(φ2

m + p2)
φ2
m + p(p+ 1)

sinφmx
1w

0

f(α) sinφmα.dα
)
. (10)

From (10) it easily follows that for values of x between 0 and c

f(x) =a1 sin a1x+ a2 sin a2x+ a3 sin a3x+ · · · (11)

where am =
2
c
.

α2
mc

2 + p2

α2
mc

2 + p(p+ 1)

cw

0

f(λ) sinαmλ.dλ, (12)

and αm is a root of the equation

αc cosαc+ p sinαc = 0. (13)

It is to be observed that if p is infinite (13) reduces to sinαc = 0, αm becomes
mπ

c
and (11) and (12) give our regulation Fourier sine series (v. Art. 31), and

therefore the ordinary Fourier development in sine series is merely a special case
of the problem just solved.

Moreover since the Fourier method of determining the coefficients of such a
series requires that
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cw

0

sinαmx sinαnx.dx = 0,

that is that
sin(αm − αn)c
αm − αn

− sin(αm + αn)c
αm + αn

= 0

or reducing, that
αmc cosαmc

sinαmc
=
αnc cosαnc

sinαnc
,

or that αm and αn should be roots of the equation

αc cosαc
sinαc

= p

where p is some constant, it follows that we have obtained in (11) the most
general sine development that can be obtained by Fourier’s method.

EXAMPLES.

1. Show that the solution of the problem of Art. 67 is

ru =
m=∞∑
m=1

bme
−a2α2

mt sinαmr,

where bm =
2
c
.
α2
mc

2 + (hc− 1)2

α2
mc

2 + hc(hc− 1)

cw

0

λf(λ) sinαmλ.dλ

and αm is a root of
αc cosαc+ (hc− 1) sinαc = 0.

2. If the initial temperature of the sphere is constant and equal to β

ru =
m=∞∑
m=1

bme
−a2α2

mt sinαmr

where bm = 2βh.
α2
mc

2 + (hc− 1)2

α2
mc

2 + hc(hc− 1)
.
sinαmc
α2
m

=
2βhc
αm

.
[α2
mc

2 + (hc− 1)2]
1
2

α2
mc

2 + hc(hc− 1)
.

3. If the temperature of the air is a constant γ instead of zero the surface
equation of condition is

Dru+ h(u− γ) = 0 when r = c.
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The substitution of u1 = u − γ, however, brings the problem under Ex. 1
and we get

r(u− γ) =
m=∞∑
m=1

bme
−a2α2

mt sinαmr

where bm =
2
c
.
α2
mc

2 + (hc− 1)2

α2
mc

2 + hc(hc− 1)

cw

0

λ[f(λ)− γ] sinαmλ.dλ.

4. An iron sphere 40 cm. in diameter is heated to the temperature 100◦

centigrade throughout; it is then allowed to cool in air which is kept at the
constant temperature 0◦. Find the temperature at the centre; at a point 10 cm.
from the centre; and at the surface; 15 minutes after cooling has begun. Given

a2 = 0.185 and h =
1

800
in C.G.S. units. (v. Ex. 3, Art. 66.)

Ans., 97◦.67; 97◦.36; 96◦.46.

5. Show that if in the slab considered in Art. 60 one face is exposed to air
at the temperature zero, so that we have Dtu = a2D2

xu, u = 0 when x = 0,
u = f(x) when t = 0, and Dxu+ hu = 0 when x = c, then

u =
m=∞∑
m=1

ame
−a2α2

mt sinαmx

where am = 2
α2
m + h2

α2
mc+ h(hc+ 1)

cw

0

f(λ) sinαmλ.dλ,

αm being a root of αc cosαc+ hc sinαc = 0.

6. If in the problem of Art. 57 heat escapes from one side of the plate into
air at the temperature zero so that we have D2

xu+D2
yu = 0, u = 0 when x = 0,

u = f(x) when y = 0, and Dxu+ hu = 0 when x = a, then

u =
m=∞∑
m=1

ame
−αmy sinαmx

where am = 2
α2
m + h2

α2
ma+ h(ha+ 1)

aw

0

f(λ) sinαmλ.dλ,

αm being a root of αa cosαa+ ha sinαa = 0.

7. If in the problem of Art. 59 there is leakage at one side of the sheet so
that we have D2

xV +D2
yV = 0, V = 0 when x = 0, V = 0 when y = b, V = f(x)

when y = 0, and DxV + hV = 0 when x = a, then

V =
m=∞∑
m=1

am
sinhαm(b− y)

sinhαmb
sinαmx,

where am has the value given in Ex. 6.
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69. If we have an infinite solid with one plane face which is exposed to air
at the temperatures U = F (t) and heat can flow only at right angles to this face,
we can solve the problem readily for the case where the initial temperatures are
zero. We have

Dtu = a2D2
xu

subject to the conditions

u = 0 when t = 0
and Dxu+ h(U−u) = 0 when x = 0.

Let v = u− 1
h
Dxu. (1)

Then v will satisfy the equation

Dtv = a2D2
xv,

and we shall also have v = U when x = 0.

Since U = F (t) v =
2√
π

∞w

x
2a
√
t

e−β
2
F

(
t− x2

4a2β2

)
dβ (2)

by Art. 51 (10).

Dxu− hu = −hv by (1).

Hence ue−hx = −h
w
e−hxvdx+ C;

v. Int. Cal. § 4, page 314.
Determining C by the fact that ue−hx = 0 when x =∞ we have

u = hehx
∞w

x

e−hxvdx. (3)

Substituting the value of v from (2) we have

u =
2hehx√

π

∞w

x

e−hxdx

∞w

x
2a
√
t

e−β
2
F

(
t− x2

4a2β2

)
dβ, (4)

as our required solution.
For an extension of this method to the flow of heat in two and three dimen-

sions and for the interpretation of the results by the aid of the theory of Images,
see E. W. Hobson, Proc. Lond. Math. Soc., Vol. XIX.
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EXAMPLES.

1. If the temperature of the air is a periodic function of the time, say
ρm sin(mαt + λm) and we care only for the limiting value of u as t increases,
show that this value is

hρme
− xa

√
mα
2(

h+
1
a

√
mα

2

)2

+
mα

2a2

[(
h+

1
a

√
mα

2

)
sin
(
mαt− x

a

√
mα

2
+ λm

)

− 1
a

√
mα

2
cos
(
mαt− x

a

√
mα

2
+ λm

)]
.

v. Art. 52 and Art. 51 Ex. 4.

Note that
w
eax sin bx.dx =

eax(a sin bx− b cos bx)
a2 + b2

and
w
eax cos bx.dx =

eax(a cos bx+ b sin bx)
a2 + b2

v. Int. Cal. Table of Int. (235) and (236).

2. If D2
xV + D2

yV = 0, V = 0 when y = 0 and DxV + h[F (y) − V ] = 0
when x = 0 show that

V =
hehx

π

∞w

x

e−hxdx

∞w

0

F (λ)dλ
[

x

x2 + (λ− y)2
− x

x2 + (λ+ y)2

]
;

v. Art. 47 Ex. 1.

70. The solution for an instantaneous heat source of strength Q at the
point x = λ if heat escapes at the origin into air at the temperature zero, so
that Dxu− hu = 0 when x = 0, can be obtained by the aid of Art. 53.

Let u = u1 +u2 where u1 is the temperature that would be due to the given
source if we had no boundary at the origin, so that

u1 =
Q

2a
√
πt
e−

(λ−x)2

4a2t . [Art. 53 (2)]

Dxu− hu = Dxu1 − hu1 +Dxu2 − hu2 = 0 when x = 0.
Therefore Dxu2 − hu2 = −(Dxu1 − hu1) (1)
when x = 0.

But −(Dxu1 − hu1) = − Q

2a
√
πt

(
λ− x
2a2t

− h
)
e−

(λ−x)2

4a2t

= − Q

2a
√
πt

(
λ

2a2t
− h
)
e−

λ2

4a2t

when x = 0.
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This is easily seen to be the value to which

− Q

2a
√
πt

(
λ+ x

2a2t
− h
)
e−

(λ+x)2

4a2t

reduces when x = 0, and this last expression is

(Dx + h)
Q

2a
√
πt
e−

(λ+x)2

4a2t

and therefore satisfies the equation

Dtu = a2D2
xu; (2)

since
Q

2a
√
πt
e−

(λ+x)2

4a2t is the temperature due to a source at x = −λ.

If, then, we determine u2 from the condition that

Dxu2 − hu2 = − Q

2a
√
πt

(
λ+ x

2a2t
− h
)
e−

(λ+x)2

4a2t (3)

taking care not to introduce any arbitrary constant or arbitrary function of t in
our integration, u2 will satisfy equation (2) and condition (1).

Integrating (3) [v. Int. Cal. § 4, page 314] and determining the constants of
integration suitably we get

u2 =
Q

2a
√
πt

[
e−

(λ+x)2

4a2t − 2hehx
∞w

x

e−hx−
(λ+x)2

4a2t dx

]
. (4)

Therefore the solution of our problem is

u =
Q

2a
√
πt

[
e−

(λ−x)2

4a2t + e−
(λ+x)2

4a2t − 2hehx
∞w

x

e−hx−
(λ+x)2

4a2t dx

]
. (5)

If we replace Q by f(λ)dλ and integrate from 0 to ∞ we get as the solution
for the case where u = f(x) when t = 0 and x > 0, and Dxu − hu = 0 when
x = 0

u =
1

2a
√
πt

∞w

0

f(λ)dλ
[
e−

(λ−x)2

4a2t + e−
(λ+x)2

4a2t − 2hehx
∞w

x

e−hx−
(λ+x)2

4a2t dx

]
. (6)

For an interpretation of this result by the theory of Images and the extension
of the method to the conduction of heat in n dimensions see G. H. Bryan, Proc.
Lond. Math. Soc., Vol. XXII.



SOLUTION OF PROBLEMS IN PHYSICS. 127

EXAMPLE.

Show that if u = f(x) when t = 0 and Dxu + h[F (t) − u] = 0 when x = 0
we must take u equal to the sum of the second members of (6) Art. 70 and of
(4) Art. 69.

71. As another problem requiring a slight extension of Fourier’s Theo-
rem let us consider the vibration of a rectangular stretched elastic membrane
fastened at the edges, that is of a rectangular drumhead.

If two of the sides are taken as axes and the plane of equilibrium of the
membrane as the plane of XY the equation for the motion of the membrane is

D2
t z = c2(D2

xz +D2
yz) (1)

see [X] Art. 1.
Let the membrane be distorted at the start into some given form z = f(x, y)

and then allowed to swing. Our equations of conditions are then

z = 0 when x = 0 (2)
z = 0 “ x = a (3)
z = 0 “ y = 0 (4)
z = 0 “ y = b (5)
z = f(x, y) “ t = 0 (6)

Dtz = 0 “ t = 0. (7)

We can get a particular solution of (1) by our usual device. Assume

z = eαx+βy+γt

and substitute in (1). We get γ2 = c2(α2 + β2) as the only relation that need
hold between α, β, and γ, in order that z = eαx+βy+γt may be a solution. This
gives

γ =± c
√
α2 + β2.

Therefore z = eαx+βy±ct
√
α2+β2

is a solution of (1) no matter what values are given to α and β.
Replace α and β by αi and βi and we have

z = e(αx+βy±ct
√
α2+β2)i

as a solution, and from this we get

z = sin(αx+ βy ± ct
√
α2 + β2) (8)

and z = cos(αx+ βy ± ct
√
α2 + β2) (9)
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as particular solutions of (1), α and β being unrestricted.
From (8) and (9) we can get solutions of the following forms

z = sinαx sinβy sin ct
√
α2 + β2

z = sinαx sinβy cos ct
√
α2 + β2

z = sinαx cosβy sin ct
√
α2 + β2

z = sinαx cosβy cos ct
√
α2 + β2

z = cosαx sinβy sin ct
√
α2 + β2

z = cosαx sinβy cos ct
√
α2 + β2

z = cosαx cosβy sin ct
√
α2 + β2

z = cosαx cosβy cos ct
√
α2 + β2,



(10)

each of which will satisfy equation (1). The second of these will satisfy also (2),
(4) and (7) whatever values be taken for α and β. It will satisfy (3) and (5) if
α and β are equal

mπ

a
and

nπ

b
respectively.

If, then, we can so combine terms of the form

sin
mπx

a
sin

nπy

b
cos cπt

√
m2

a2
+
n2

b2

as to satisfy (6) our problem will be completely solved.
This can be done if we can express f(x, y) as a sum of terms of the form

A sin
mπx

a
sin

nπy

b
, the sum and the function being equal when x lies between

0 and a and y between 0 and b.
f(x, y) can be expressed in terms of sin

mπx

a
by Fourier’s Theorem if we

regard y as constant. We have

f(x, y) =
m=∞∑
m=1

am sin
mπx

a
(11)

where am =
2
a

aw

0

f(λ, y) sin
mπλ

a
dλ. (12)

f(λ, y) in (12) is a function of y and may be developed by Fourier’s Theorem.

We have f(λ, y) =
n=∞∑
n=1

bn sin
nπy

b
(13)

where bn =
2
b

bw

0

f(λ, µ) sin
nπµ

b
dµ. (14)

Substituting for f(λ, y) in (12) the value just obtained we have

am =
2
a

2
b

n=∞∑
n=1

( aw

0

dλ

bw

0

f(λ, µ) sin
mπλ

a
sin

nπµ

b
dµ

)
sin

nπy

b
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and

f(x, y) =
4
ab

m=∞∑
m=1

n=∞∑
n=1

(
sin

mπx

a
sin

nπy

b

aw

0

dλ

bw

0

f(λ, µ) sin
mπλ

a
sin

nπµ

b
dµ

)
.

(15)

Hence z =
m=∞∑
m=1

n=∞∑
n=1

(
Am,n sin

mπx

a
sin

nπy

b
cos cπt

√
m2

a2
+
n2

b2

)
, (16)

where Am,n =
4
ab

aw

0

dλ

bw

0

f(λ, µ) sin
mπλ

a
sin

nπµ

b
dµ. (17)

is our required solution.

EXAMPLES.

1. Show that if the membrane starts from its position of equilibrium but
with a given initial velocity impressed upon each point so that z = 0 when t = 0
and Dtz = F (x, y) when t = 0 the solution is

z =
1
cπ

m=∞∑
m=1

n=∞∑
n=1

(
Am,n

1√
m2

a2
+
n2

b2

sin
mπx

a
sin

nπy

b
sin cπt

√
m2

a2
+
n2

b2

)

where Am,n =
4
ab

aw

0

dλ

bw

0

F (λ, µ) sin
mπλ

a
sin

nπµ

b
dµ.

2. If there is both initial distortion and initial velocity

z =
4
ab

m=∞∑
m=1

n=∞∑
n=1

sin
mπx

a
sin

nπy

b

[
Am,n cos cπt

√
m2

a2
+
n2

b2

+Bm,n sin cπt

√
m2

a2
+
n2

b2

]

where Am,n =
aw

0

dλ

bw

0

f(λ, µ) sin
mπλ

a
sin

nπµ

b
dµ,

and Bm,n =
1

cπ

√
m2

a2
+
n2

b2

aw

0

dλ

bw

0

F (λ, µ) sin
mπλ

a
sin

nπµ

b
dµ.

3. Obtain a particular solution of (1) Art. 71 by assuming z = T.X.Y where
T is a function of t alone, X of x alone, and Y of y alone.
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72. A number of interesting conclusions can be drawn from the results of
Art. 71 and Exs. 1 and 2.

(a) No one of the three values of z is in general a periodic function of t,
and consequently a vibrating rectangular membrane will not in general give a
musical note.

(b) A stretched rectangular membrane can be made to give a musical note
by starting the vibration properly. For if the initial circumstances are such that
the solution reduces to a single term, as will be the case if the initial distortion
in the problem of Art. 71 be such that f(x, y) = Am,n sin

mπx

a
sin

nπy

b
, or the

initial velocity in Ex. 1 be such that F (x, y) = Bm,n sin
mπx

a
sin

nπy

b
, or the

initial distortion and initial velocity in Ex. 2 be the values just given, then the
vibration will be periodic and will have the period

T =
2

c

√
m2

a2
+
n2

b2

. (1)

Since T is a function of m and n and m and n are any whole numbers, the
same membrane is capable of giving a great variety of musical notes of different
pitches. If m and n are both unity we get the lowest note the membrane can
give, which is called its fundamental note. Its period

T1 =
2

c

√
1
a2

+
1
b2

=
2ab

c
√
a2 + b2

(2)

If m and n are both equal to k we get

Tk =
2ab

kc
√
a2 + b2

; (3)

therefore the membrane can be made to give any harmonic of its fundamental
note.

More than this, since as we have seen

Tm,n =
2

c

√
m2

a2
+
n2

b2

is the period of any note the membrane can give, and since if m and n are
replaced by mk and nk we get

Tmk,nk =
2

ck

√
m2

a2
+
n2

b2

the membrane can sound all the harmonics of any note which it can give.
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(c) In the case considered above, where the solution reduces to the single
term

z = sin
mπx

a
sin

nπy

b

[
Am,n cos cπt

√
m2

a2
+
n2

b2
+Bm,n sin cπt

√
m2

a2
+
n2

b2

]
,

if x =
a

m
, or

2a
m

, or
3a
m
· · · or

(m− 1)a
m

, z = 0 for all values of t, and the lines

x =
a

m
, x =

2a
m

, · · · x =
(m− 1)a

m
remain at rest during the whole vibration

and are nodes. The same thing is true of the lines

y =
b

n
, y =

2b
n
, y =

3b
n
, · · · y =

(n− 1)b
n

.

73. If the membrane is square it may have much more complicated nodes
than if the length and breadth are unequal, as in this case the period of any
term of the general solution reduces to

T =
2a

c
√
m2 + n2

(1)

and there will in general be two terms having the same period, and a musi-
cal note of the pitch corresponding to that period may be produced by initial
circumstances that bring in both terms. Thus

z = sin
mπx

a
sin

nπy

a

[
Am,n cos

cπt

a

√
m2 + n2 +Bm,n sin

cπt

a

√
m2 + n2

]
+ sin

nπx

a
sin

mπy

a

[
An,m cos

cπt

a

√
m2 + n2 +Bn,m sin

cπt

a

√
m2 + n2

]
is a form of vibration that will give a musical note. Let us write this

z = cos
cπt

a

√
m2 + n2

[
A sin

mπx

a
sin

nπy

a
+B sin

nπx

a
sin

mπy

a

]
+ sin

cπt

a

√
m2 + n2

[
C sin

mπx

a
sin

nπy

a
+D sin

nπx

a
sin

mπy

a

]
(2)

and in studying the forms of musical vibration of which the membrane is capable
we may take A, B, C, and D at pleasure. Consider the simple case where A = C
and B = D; then (2) reduces to

z =
(
A sin

mπx

a
sin

nπy

a
+B sin

nπx

a
sin

mπy

a

)(
cos

cπt

a

√
m2 + n2

+ sin
cπt

a

√
m2 + n2

)
. (3)
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Values of x and y that will reduce the first parenthesis in (3) to zero will corre-
spond to points of the membrane remaining motionless during the vibration.

Let us consider a few cases at length.
(a) If m = 1 and n = 1, the first parenthesis in (3) becomes

(A+B) sin
πx

a
sin

πy

a
,

which is equal to zero only when x = 0 or y = 0, or x = a or y = a, that
is, for the four edges of the membrane. If, then, the membrane is sounding its
fundamental note it has no nodes.

(b) If m = 1 and n = 2, we have

A sin
πx

a
sin

2πy
a

+B sin
2πx
a

sin
πy

a
= 0

to give the nodes.

Let B = 0, then sin
πx

a
sin

2πy
a

= 0, which is satisfied by y =
a

2
; and in

addition to the edges the line y =
a

2
is at rest and is a node.

If A = 0 x =
a

2
is a node.

If A = B

sin
πx

a
sin

2πy
a

+ sin
2πx
a

sin
πy

a
= 0

2 sin
πx

a
sin

πy

a
cos

πy

a
+ 2 sin

πx

a
cos

πx

a
sin

πy

a
= 0

sin
πx

a
sin

πy

a

(
cos

πy

a
+ cos

πx

a

)
= 0.

The first factor gives the four edges of the membrane. The second written equal
to zero gives

cos
πy

a
= − cos

πx

a
= cos

(
π − πx

a

)
πy

a
= π − πx

a
x+ y = a,

which is a diagonal of the square.
If B = −A

sin
πx

a
sin

2πy
a
− sin

2πx
a

sin
πy

a
= 0

cos
πy

a
= cos

πx

a
x− y = 0,

which is the other diagonal of the square.
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Other relations between A and B will give Trigonometric curves of the form

cos
πy

a
= −B

A
cos

πx

a

which are easily constructed and which obviously all agree in passing through
the middle point of the square.

We give the figures for a few of the cases

(c) If m = n = 2 we have

(A+B) sin
2πx
a

sin
2πy
a

= 0

to give the nodes, which are merely the lines

x =
a

2
, and y =

a

2
.

This form gives the octave of the fundamental note.
(d) If m = 1 and n = 3 we have

A sin
πx

a
sin

3πy
a

+B sin
3πx
a

sin
πy

a
= 0

to give the nodes.

If A = 0 we get x =
a

3
and x =

2a
3

(1)

If B = 0 we get y =
a

3
and y =

2a
3

(2)
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If A = −B we get

sin
πx

a
sin

3πy
a
− sin

3πx
a

sin
πy

a
= 0

sin
πx

a
sin

πy

a

[
4 cos2 πy

a
− 1− 4 cos2 πx

a
+ 1
]

= 0

cos2 πy

a
− cos2 πx

a
= 0(

cos
πy

a
− cos

πx

a

)(
cos

πy

a
+ cos

πx

a

)
= 0

or x− y = 0 and x+ y = a. (3)

If A = B we get cos2 πy

a
+ cos2 πx

a
=

1
2

or cos
2πy
a

+ cos
2πx
a

= −1, (4)

a Trigonometric curve easily constructed.
For other relations between A and B we get more complicated Trigonometric

curves coming under the general form

A cos
2πy
a

+B cos
2πx
a

= −A+B

2
(5)

which all agree in containing the points(a
3
,
a

3

)
,
(a

3
,

2a
3

)
,
(2a

3
,
a

3

)
, and

(2a
3
,

2a
3

)
.
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MISCELLANEOUS PROBLEMS.

I. Logarithmic Potential. Polar Coördinates.

1. Show that D2
xV +D2

yV = 0 becomes

D2
rV +

1
r
DrV +

1
r2
D2
φV = 0

if we transform to Polar Coördinates.

2. If in D2
rV +

1
r
DrV +

1
r2
D2
φV = 0 (1)

we let V = R.Φ we get

Φ = A cosαφ+B sinαφ

R = A1r
α +B1r

−α

}
or

Φ = Aeαφ +Be−αφ

R = A1 cos(α log r) +B1 sin(α log r);

}
whence

V = rα cosαφ V = eαφ cos(α log r) V = coshαφ cos(α log r)

V = rα sinαφ V = eαφ sin(α log r) V = coshαφ sin(α log r)

V =
1
rα

cosαφ V = e−αφ cos(α log r) V = sinhαφ cos(α log r)

V =
1
rα

sinαφ V = e−αφ sin(α log r) V = sinhαφ sin(α log r)

are particular solutions of (1).

3. Show that if V satisfies (1) Ex. 2 and V = f(φ) when r = a

V =
1
2
b0 +

m=∞∑
m=1

( r
a

)m
(bm cosmφ+ am sinmφ) for r < a

and V =
1
2
b0 +

m=∞∑
m=1

(a
r

)m
(bm cosmφ+ am sinmφ) for r > a,

where bm =
1
π

πw

−π
f(φ) cosmφ.dφ and am =

1
π

πw

−π
f(φ) sinmφ.dφ

4. Show that if V satisfies (1) Ex. 2 and V = f(r) when φ = 0 and r > 0

V =
1
π

∞w

−∞
f(eλ)dλ

∞w

0

coshα(π − φ)
coshαπ

cosα(λ− log r).dα

=
1
π

sin
φ

2

∞w

−∞
f(eλ)

cosh
1
2

(λ− log r)

cosh(λ− log r)− cosφ
dλ.



MISCELLANEOUS PROBLEMS. 136

5. If V = 1 when φ = 0 and 0 < r < 1, and V = 0 when φ = 0 and r > 1

V =
1
π

{
π

2
− tan−1

[
sinh

log r
2

sin
φ

2

]}
=

1
π

[
π

2
− tan−1

(
r − 1

2
√
r. sin

φ

2

)]
.

6. If V = f(r) when φ = 0 and V = 0 when φ = β

V =
1
π

∞w

−∞
f(eλ)dλ

∞w

0

sinh(β − φ)α
sinhβα

cosα(λ− log r).dα

=
1

2β
sin

πφ

β

∞w

−∞

f(eλ)dλ

cosh
π

β
(λ− log r)− cos

π

β
φ
,

if 0 < φ < β.

7. If V = 0 when φ = 0 and V = F (r) when φ = β

V =
1
π

∞w

−∞
F (eλ)dλ

∞w

0

sinhφα
sinhβα

cosα(λ− log r).dα

=
1

2β
sin

πφ

β

∞w

−∞

F (eλ)dλ

cosh
π

β
(λ− log r) + cos

π

β
φ
.

8. If V = χ(r) when φ = 0 and r < a, V = 0 when φ = β, and V = 0 when
r = a

V =
1

2β
sin

πφ

β

0w

−∞
χ(aeλ)

[
dλ

cosh
π

β

(
λ− log

r

a

)
− cos

πφ

β

− dλ

cosh
π

β

(
λ+ log

r

a

)
− cos

πφ

β

]
.

9. If V = 0 when r = 1, V = 1 when φ = 0, V = 0 when φ =
π

2

V =
2
π

tan−1

[
1− r2

1 + r2
ctnφ

]
.

10. If V = 0 when r = 1, V = 1 when φ = 0, V = 1 when φ =
π

2

V =
2
π

tan−1

[
1− r4

2r2 sin 2φ

]
.
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11. If V = f(φ) when r = a, V = 0 when φ = 0, and V = 0 when φ = β

V =
m=∞∑
m=1

am

( r
a

)mπ
β

sin
mπφ

β
if r < a

V =
m=∞∑
m=1

am

(a
r

)mπ
β

sin
mπφ

β
if r > a

where am =
2
β

βw

0

f(φ) sin
mπφ

β
dφ and 0 < φ < β.

12. If V = f(φ) when r = a, V = 0 when r = b, V = 0 when φ = 0, and
V = 0 when φ = β, then if a < r < b and 0 < φ < β

V =
m=∞∑
m=1

{
a
mπ
β b

mπ
β

a
2mπ
β − b

2mπ
β

[(r
b

)mπ
β −

( b
r

)mπ
β

]
am sin

mπφ

β

}

where am =
2
β

βw

0

f(φ) sin
mπφ

β
dφ.

13. If V = F (φ) when r = b, V = 0 when r = a, V = 0 when φ = 0, and
V = 0 when φ = β, then if a < r < b and 0 < φ < β

V =
m=∞∑
m=1

{
a
mπ
β b

mπ
β

b
2mπ
β − a

2mπ
β

[( r
a

)mπ
β −

(a
r

)mπ
β

]
am sin

mπφ

β

}

where am =
2
β

βw

0

F (φ) sin
mπφ

β
dφ.

14. If V = χ(r) when φ = 0, V = 0 when φ = β, V = 0 when r = a, and
V = 0 when r = b, then if a < r < b and 0 < φ < β

V =
m=∞∑
m=1

{
am

sinh
mπ(β − φ)
log b− log a

sinh
mπβ

log b− log a

sin
mπ(log r − log a)

log b− log a

}

where am =
2

log b− log a

log b
aw

0

χ(aex) sin
mπx

log b− log a
dx.

15. If V = ψ(r) when φ = β, V = 0 when φ = 0, V = 0 when r = a, and
V = 0 when r = b, then if a < r < b and 0 < φ < β

V =
m=∞∑
m=1

{
am

sinh
mπφ

log b− log a

sinh
mπβ

log b− log a

sin
mπ(log r − log a)

log b− log a

}
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where am =
2

log b− log a

log b
aw

0

ψ(aex) sin
mπx

log b− log a
dx.

II. Potential Function in Space.

1. Show that

f(x, y) =
1
π2

∞w

0

dα

∞w

0

dβ

∞w

0

dλ

∞w

0

f(λ, µ) cosα(λ− x) cosβ(µ− y).dµ,

for all values of x and y.

2. Find particular solutions of D2
xV +D2

yV +D2
zV = 0 in the forms

V = e±z
√
α2+β2

cos(αx± βy)

V = e±z
√
α2+β2

sin(αx± βy)

V = sinh z
√
α2 + β2. sin(αx± βy)

V = cosh z
√
α2 + β2. sin(αx± βy)

&c.

3. Given D2
xV + D2

yV + D2
zV = 0, and V = f(x, y) when z = 0, solve for

positive values of z.

Result: V =
1

2π

∞w

−∞
dλ

∞w

−∞

zf(λ, µ)dµ
[z2 + (λ− x)2 + (µ− y)2]

3
2
.

4. Confirm the result of the last example by showing that if f(x, y) is
independent of y

V =
1
π

∞w

−∞

zf(λ, µ)dλ
z2 + (λ− x)2

(v. Ex. 3 Art. 45).

5. If D2
xV +D2

yV +D2
zV = 0, and V = 1 when z = 0 for all points within

the rectangle bounded by the lines x = a, x = −a, y = b, and y = −b; and
V = 0 when z = 0 for all points outside of this rectangle, then

2πV =

b− y√
(b− y)2

{
π

2
+

1
2

sin−1 (a− x)2(b− y)2 − z2[(a− x)2 + (b− y)2 + z2]
(a− x)2(b− y)2 + z2[(a− x)2 + (b− y)2 + z2]

+
1
2

sin−1 (a+ x)2(b− y)2 − z2[(a+ x)2 + (b− y)2 + z2]
(a+ x)2(b− y)2 + z2[(a+ x)2 + (b− y)2 + z2]

}
+

b+ y√
(b+ y)2

{
π

2
+

1
2

sin−1 (a− x)2(b+ y)2 − z2[(a− x)2 + (b+ y)2 + z2]
(a− x)2(b+ y)2 + z2[(a− x)2 + (b+ y)2 + z2]

+
1
2

sin−1 (a+ x)2(b+ y)2 − z2[(a+ x)2 + (b+ y)2 + z2]
(a+ x)2(b+ y)2 + z2[(a+ x)2 + (b+ y)2 + z2]

}
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if −a < x < a, and

4πV =
b− y√
(b− y)2

{
sin−1 (a− x)2(b− y)2 − z2[(a− x)2 + (b− y)2 + z2]

(a− x)2(b− y)2 + z2[(a− x)2 + (b− y)2 + z2]

− sin−1 (a+ x)2(b− y)2 − z2[(a+ x)2 + (b− y)2 + z2]
(a+ x)2(b− y)2 + z2[(a+ x)2 + (b− y)2 + z2]

}
+

b+ y√
(b+ y)2

{
sin−1 (a− x)2(b+ y)2 − z2[(a− x)2 + (b+ y)2 + z2]

(a− x)2(b+ y)2 + z2[(a− x)2 + (b+ y)2 + z2]

− sin−1 (a+ x)2(b+ y)2 − z2[(a+ x)2 + (b+ y)2 + z2]
(a+ x)2(b+ y)2 + z2[(a+ x)2 + (b+ y)2 + z2]

}
;

if x < −a or x > a.

6. If the value of the potential function V is given at every point of the base
of an infinite rectangular prism and if the sides of the prism are at potential
zero the value of V at any point within the prism is

V =
4
ab

m=∞∑
m=1

n=∞∑
n=1

e
−πz

q
m2

a2
+n2

b2 sin
mπx

a
sin

nπy

b

aw

0

dλ

bw

0

f(λ, µ) sin
mπλ

a
sin

nπµ

b
dµ.

If V = 1 on the base of the prism this reduces to

V =
16
π2

m=∞∑
m=0

n=∞∑
n=0

e−πz
q

(2m+1)2

a2
+

(2n+1)2

b2

sin
(2m+ 1)πx

a
sin

(2n+ 1)πy
b

(2m+ 1)(2n+ 1)
.

7. If the value of the potential function on five faces of a rectangular paral-
lelopiped, whose length, breadth, and height are a, b, and c, is zero, and if the
value of V is given for every point of the sixth face, then for any point within
the parallelopiped

V =
m=∞∑
m=1

n=∞∑
n=1

Am,n

sinhπ(c− z)
√
m2

a2
+
n2

b2

sinhπc

√
m2

a2
+
n2

b2

sin
mπx

a
sin

nπy

b

where Am,n =
4
ab

aw

0

dλ

bw

0

f(λ, µ) sin
mπλ

a
sin

nπµ

b
dµ.

8. If the value of the potential function is given on two opposite faces of a
rectangular parallelopiped and is zero on the four remaining faces, then within
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the parallelopiped

V =
m=∞∑
m=1

n=∞∑
n=1

Am,n

sinhπ(c− z)
√
m2

a2
+
n2

b2

sinhπc

√
m2

a2
+
n2

b2

sin
mπx

a
sin

nπy

b

+
m=∞∑
m=1

n=∞∑
n=1

Bm,n

sinhπz

√
m2

a2
+
n2

b2

sinhπc

√
m2

a2
+
n2

b2

sin
mπx

a
sin

nπy

b

where Am,n =
4
ab

aw

0

dλ

bw

0

f(λ, µ) sin
mπλ

a
sin

nπµ

b
dµ

and Bm,n =
4
ab

aw

0

dλ

bw

0

F (λ, µ) sin
mπλ

a
sin

nπµ

b
dµ.

9. If the value of the potential function is given at every point on the
surface of a rectangular parallelopiped, what is its value at any point within the
parallelopiped?

III. Conduction of Heat in a Plane.

1. Find particular solutions of Dtu = a2(D2
xu+D2

yu) of the forms

u = e−a
2(α2+β2)t sin(αx± βy)

u = e−a
2(α2+β2)t cos(αx± βy).

2. Given the initial temperature of every point in a thin plane plate, find
the temperature of any point at any time,

u =
1

4a2πt

∞w

−∞
dλ

∞w

−∞
e−

(λ−x)2+(µ−y)2

4a2t f(λ, µ)dµ

=
1
π

∞w

−∞
e−β

2
dβ

∞w

−∞
e−γ

2
f(x+ 2a

√
t.β, y + 2a

√
t.γ)dγ.

3. For an instantaneous source of strength Q at (λ, µ)

u =
Q

4πa2t
e−

(λ−x)2+(µ−y)2

4a2t v. Art. 53.

For an instantaneous doublet of strength P at (0, µ) with its axis perpendic-
ular to the axis of Y

u =
Px

8πa4t2
e−

x2+(µ−y)2

4a2t v. Art. 54.
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For a permanent doublet of strength P at (0, µ) with its axis perpendicular
to the axis of Y

u =
P

2πa2

x

x2 + (µ− y)2
e−

x2+(µ−y)2

4a2t .

If the strength of the doublet were Pdµ and the heat were uniformly gener-
ated and absorbed along the element dµ of the axis of Y beginning at (0, µ) we
should have

u =
P

2πa2
e−

x2+(µ−y)2

4a2t
xdµ

x2 + (µ− y)2
=

P

2πa2
e−

x2+(µ−y)2

4a2t d tan−1 µ− y
x

,

and since d tan−1 µ− y
x

is the angle ARA′, where A and A′ are the points (0, µ)

and (0, µ+dµ) and R is the point (x, y), u = 0 when x = 0 unless µ < y < µ+dµ,

in which case u =
P

2a2
if x approaches zero from the positive side; and u = 0

when t = 0 except in the element dµ. If then u = 0 when t = 0 and u = f(y)
when x = 0 we have only to suppose a doublet of strength 2a2f(x)dx placed in
each element of the axis of Y and then to integrate; we get

u =
1
π

∞w

−∞
e−

x2+(µ−y)2

4a2t
xf(µ)

x2 + (µ− y)2
dµ.

For a permanent doublet of strength F (t) at (0, µ) we have

u =
x

8πa4

tw

0

e
− x

2+(µ−y)2

4a2(t−τ) (t− τ)−2F (τ)dτ.

=
1

2πa2

[
xF (0)

x2 + (µ− y)2
e−

x2+(µ−y)2

4a2t +
tw

0

xF ′(τ)
x2 + (µ− y)2

e
− x

2+(µ−y)2

4a2(t−τ) dτ

]
.

From the reasoning above this must be zero when t = 0 except at the point
(0, µ), must be 2a2F (t) at the point (0, µ), and 0 at every other point of the
axis of Y when t is not zero.

Hence if u = 0 when t = 0 and u = F (y, t) when x = 0

u =
1
π

∞w

−∞

xF (µ, 0)
x2 + (µ− y)2

e−
x2+(µ−y)2

4a2t dµ+
1
π

∞w

−∞
dµ

tw

0

xDτF (µ, τ)
x2 + (µ− y)2

e
− x

2+(µ−y)2

4a2(t−τ) dτ.

For an extension of this solution by the method of images to the case where
there are other rectilinear boundaries and for its application to the correspond-
ing problems in the flow of heat in three dimensions see E. W. Hobson in Vol.
XIX. Proc. Lond. Math. Soc.

4. If the perimeter of a thin plane rectangular plate is kept at the temper-
ature zero and the initial temperatures of all points of the plate are given, then
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for any point of the plate

u =
4
bc

m=∞∑
m=1

n=∞∑
n=1

e
−a2π2

“
m2

b2
+n2

c2

”
t sin

mπx

b
sin

nπy

c

bw

0

dλ

cw

0

f(λ, µ) sin
mπλ

b
sin

nπµ

c
dµ.

if b is the length and c the breadth of the plate.

5. A large mass of iron at the temperature 0◦ contains an iron core in the
shape of a long prism 40 cm. square. The core is removed and heated to the
temperature of 100◦ throughout and then replaced. Find the temperature of
a point in the axis of the core fifteen minutes afterward. Given a2 = .185 in
C.G.S. units. Ans., 52◦.9.

6. If the prism described in Ex. 5 after being heated to 100◦ has its lateral
faces kept for 15 minutes at the temperature 0◦ find the temperature of a point
in its axis. Ans., 20◦.8.

IV. Conduction of Heat in Space.

1. Show that

1
π3

∞w

0

dα

∞w

0

dβ

∞w

0

dγ

∞w

−∞
dλ

∞w

−∞
dµ

∞w

−∞
f(λ, µ, ν)

cosα(λ− x) cosβ(µ− y) cos γ(ν − z).dν = f(x, y, z)

for all values of x, y, and z.

2. Show that

f(x, y, z) =
m=∞∑
m=1

n=∞∑
n=1

p=∞∑
p=1

Am,n,p sin
mπx

a
sin

nπy

b
sin

pπz

c

where Am,n,p =
8
abc

aw

0

dλ

bw

0

dµ

cw

0

f(λ, µ, ν) sin
mπλ

a
sin

nπµ

b
sin

pπν

c
dν,

for 0 < x < a, 0 < y < b, 0 < z < c.

3. Obtain particular solutions of Dtu = a2(D2
xu+D2

yu+D2
zu) of the forms

u = e−a
2(α2+β2+γ2)t sin(αx± βy ± γz).

u = e−a
2(α2+β2+γ2)t cos(αx± βy ± γz).
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4. Given the initial temperature of every point in an infinite homogeneous
solid find the temperature of any point at any time.

u =
1

8a3(πt)
3
2

∞w

−∞
dλ

∞w

−∞
dµ

∞w

−∞
e−

(λ−x)2+(µ−y)2+(ν−z)
4a2t f(λ, µ, ν)dν

=
1
π

3
2

∞w

−∞
e−β

2
dβ

∞w

−∞
e−γ

2
dγ

∞w

−∞
e−δ

2
f(x+ 2a

√
t.β, y + 2a

√
t.γ, z + 2a

√
t.δ)dδ.

5. If the surface of a rectangular parallelopiped is kept at the temperature
zero and the initial temperatures of all points of the parallelopiped are given,
then for any point of the parallelopiped

u =
m=∞∑
m=1

n=∞∑
n=1

p=∞∑
p=1

Am,n,pe
−a2π2

“
m2

b2
+n2

c2
+ p2

d2

”
t sin

mπx

b
sin

nπy

c
sin

pπz

d

where Am,n,p =
8
bcd

bw

0

dλ

cw

0

dµ

dw

0

f(λ, µ, ν) sin
mπλ

b
sin

nπµ

c
sin

pπν

d
dν.

6. An iron cube 40 cm. on an edge is heated to the uniform temperature
of 100◦ Centigrade and then tightly enclosed in a large iron mass which is at
the uniform temperature of 0◦. Find the temperature of the centre of the cube
fifteen minutes afterwards. Ans., 38◦.4.

7. An iron cube 40 cm. on an edge is heated to the uniform temperature
of 100◦ and then its surface is kept for fifteen minutes at the temperature 0◦.
Required the temperature of its centre. Ans., 9◦.5.
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CHAPTER V.1

ZONAL HARMONICS.

74. In Art. 16 we obtained

z = Apm(x) +Bqm(x) (1)

[v. (6) Art. 16] as the general solution of Legendre’s Equation

(1− x2)
d2z

dx2
− 2x

dz

dx
+m(m+ 1)z = 0, (2)

m being wholly unrestricted in value and x lying between −1 and 1; where

pm(x) = 1− m(m+ 1)
2!

x2 +
m(m− 2)(m+ 1)(m+ 3)

4!
x4

− m(m− 2)(m− 4)(m+ 1)(m+ 3)(m+ 5)
6!

x6 + · · · (3)

and

qm(x) = x− (m− 1)(m+ 2)
3!

x3 +
(m− 1)(m− 3)(m+ 2)(m+ 4)

5!
x5

− (m− 1)(m− 3)(m− 5)(m+ 2)(m+ 4)(m+ 6)
7!

x7 + · · · ; (4)

and we found V = rmpm(cos θ)

V =
1

rm+1
pm(cos θ)

V = rmqm(cos θ)

V =
1

rm+1
qm(cos θ),


(5)

m being unrestricted in value, as particular solutions of the special form assumed
by Laplace’s Equation in spherical coördinates when V is independent of φ; that
is, of the equation

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0. (6)

For the important case where m is a positive integer we found

z = APm(x) +BQm(x) (7)

1Before reading this chapter the student is advised to re-read carefully articles 9, 10, 13(c),
15, 16, and 18(c).
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[v. (10) Art. 16] as the general solution of Legendre’s Equation (2), whence

V = rmPm(cos θ)

V =
1

rm+1
Pm(cos θ)

V = rmQm(cos θ)

V =
1

rm+1
Qm(cos θ)


(8)

are particular solutions of (6) if m is a positive integer.

Pm(x) =
(2m− 1)(2m− 3) · · · 1

m!

[
xm − m(m− 1)

2(2m− 1)
xm−2

+
m(m− 1)(m− 2)(m− 3)

2.4.(2m− 1)(2m− 3)
xm−4 − · · ·

]
(9)

[v. (8) Art. 16] and is a finite sum terminating with the term which involves x
if m is odd and with the term involving x0 if m is even.

It is called a Surface Zonal Harmonic, or a Legendre’s Coefficient, or more
briefly a Legendrian.

Qm(x) =
m!

(2m+ 1)(2m− 1) · · · 1

[
1

xm+1
+

(m+ 1)(m+ 2)
2.(2m+ 3)

1
xm+3

+
(m+ 1)(m+ 2)(m+ 3)(m+ 4)

2.4.(2m+ 3)(2m+ 5)
1

xm+5
+ · · ·

]
(10)

if x < −1 or x > 1. [v. (9) Art. 16.]
It is called a Surface Zonal Harmonic of the second kind.

Qm(x) = (−1)
m+1

2

2m−1
[
Γ
(m+ 1

2

)]2
Γ(m+ 1)

pm(x)

= (−1)
m+1

2
2.4.6. · · · (m− 1)

3.5.7. · · ·m
pm(x) (11)

[v. (13) Art. 16] if m is odd and −1 < x < 1.

Qm(x) = (−1)
m
2

2m
[
Γ
(m+ 1

2

)]2
Γ(m+ 1)

qm(x)

= (−1)
m
2

2.4.6. · · ·m
1.3.5. · · · (m− 1)

qm(x) (12)

[v. (14) Art. 16] if m is even and −1 < x < 1.
In most of the work that immediately follows we shall regard x in Pm(x)as

equal to cos θ and therefore as lying between −1 and 1.2

2English writers on Spherical Harmonics generally use µ in place of x for cos θ. We shall
follow them, however, only when we should thereby avoid confusion.
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75. In Article 9 the undetermined coefficient am of xm in Pm(x) was

arbitrarily written in the form
(2m− 1)(2m− 3) · · · 1

m!
for reasons which shall

now be given.
In Articles 9 and 16 z = Pm(x) was obtained as a particular solution of

Legendre’s Equation

(1− x2)
d2z

dx2
− 2x

dz

dx
+m(m+ 1)z = 0 (1)

by the device of assuming that z could be expressed as a sum or a series of terms
of the form anx

n and then determining the coefficients. We can, however, obtain
a particular solution of Legendre’s Equation by an entirely different method.

The potential function due to a unit of mass concentrated at a given point
(x1, y1, z1) is

V =
1√

(x− x1)2 + (y − y1)2 + (z − z1)2
(2)

and this must be a particular solution of Laplace’s Equation

D2
xV +D2

yV +D2
zV = 0, (3)

as is easily verified by direct substitution.
If we transform (2) to spherical coördinates using the formulas of transfor-

mation

x = r cos θ
y = r sin θ cosφ
z = r sin θ sinφ we get

V =
1√

r2 − 2rr1[cos θ cos θ1 + sin θ sin θ1 cos(φ− φ1)] + r2
1

(4)

as a solution of Laplace’s Equation in Spherical Coördinates

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) +
1

sin2 θ
Dφ

2V = 0 [XIII] Art. 1.

If the given point (x1, y1, z1) is taken on the axis of X, as it must be that
(4) may be independent of φ, θ1 = 0, and

V =
1√

r2 − 2rr1 cos θ + r2
1

(5)

is a solution of
rD2

r(rV ) +
1

sin θ
Dθ(sin θDθV ) = 0. (6)
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Equation (5) may be written

V =
1
r

1√
1− 2

r1

r
cos θ +

r2
1

r2

(7)

or V =
1
r1

1√
1− 2

r

r1
cos θ +

r2

r2
1

. (8)

√
1− 2z cos θ + z2 is finite and continuous for all values real or complex of

z. It is double-valued but the two branches of the function are distinct except
for the values of z which make 1 − 2z cos θ + z2 = 0 namely z = cos θ + i sin θ
and z = cos θ − i sin θ, both of which have the modulus unity and which are
critical values.

1√
1− 2z cos θ + z2

is finite and continuous except for the values of z =

cos θ − i sin θ and z = cos θ + i sin θ for which it becomes infinite; it is double-
valued but has as critical values only these values of z. It is then holomorphic
within a circle described with the origin as centre and the radius unity, and can
be developed into a power series which will be convergent for all values of z
having moduli less than one. (Int. Cal. Arts. 207, 212, 214, 220.)

If then r > r1
1√

1− 2r1

r
cos θ +

r2
1

r2

can be developed into a convergent series

involving whole powers of
r1

r
.

Let
∑

pm
rm1
rm

be this series, pm, of course, being a function of cos θ. Then

V =
1
r

∑
pm

rm1
rm

[v. (7)] is a solution of (6). Substitute this value of V in (6) and we get∑[
rm1
rm+1

m(m+ 1)pm +
rm1
rm+1

1
sin θ

d

dθ

(
sin θ

dpm
dθ

)]
= 0.

As this must hold whatever the value of r provided r > r1 the coefficient of each
power of r must be zero, and hence the equation

1
sin θ

d

dθ

(
sin θ

dpm
dθ

)
+m(m+ 1)pm = 0 (9)

must be true.
But as we have seen in Art. 9 the substitution of x = cos θ in (9) reduces it

to

(1− x2)
d2pm
dx2

− 2x
dpm
dx

+m(m+ 1)pm = 0,
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and therefore z = pm

is a solution of Legendre’s Equation (1).

If r < r1
1√

1− 2r
r1

cos θ +
r2

r2
1

can be developed into a convergent series

involving whole powers of
r2

r2
1

.

Let
∑

pm
rm

rm1
be this series. Then

V =
1
r1

∑
pm

rm

rm1

(v. 8) is a solution of (6); substituting in (6) we get∑[
rm

rm+1
1

m(m+ 1)pm +
rm

rm+1
1

1
sin θ

d

dθ

(
sin θ

dpm
dθ

)]
= 0,

whence it follows as before that

z = pm

is a solution of Legendre’s Equation.
But pm is the coefficient of the mth power of

r

r1
in the development of(

1− 2
r

r1
cos θ +

r2

r2
1

)− 1
2

according to powers of
r

r1
, or of the mth power of

r1

r

in the development of
(

1− 2
r1

r
cos θ +

r2
1

r2

)− 1
2

according to powers of
r1

r
, or

more briefly it is the coefficient of the mth power of z in the development of
(1− 2xz + z2)−

1
2 according to powers of z, x standing for cos θ.

(1− 2xz + z2)−
1
2 = [1− z(2x− z)]− 1

2

and can be developed by the Binomial Theorem; the coefficient of zm is easily
picked out and is

(2m− 1)(2m− 3) · · · 1
m!

[
xm − m(m− 1)

2(2m− 1)
xm−2

+
m(m− 1)(m− 2)(m− 3)

2.4.(2m− 1)(2m− 3)
xm−4 − · · ·

]
.

But this is precisely Pm(x). [v. Art. 74 (9)]
Hence Pm(x) is equal to the coefficient of the mth power of z in the devel-

opment of [1−2xz+z2]−
1
2 into a power series, the modulus of z being less than

unity.
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76. If x = 1 Pm(x) = 1. For if x = 1 (1 − 2xz + z2)−
1
2 reduces to

(1− 2z + z2)−
1
2 that is to (1− z)−1, which develops into

1 + z + z2 + z3 + z4 + · · · ,

and the coefficient of each power of z is unity. Therefore

Pm(1) = 1. (1)

We have seen that if m is even Pm(x) contains only even powers of x and
terminates with the term involving x0, that is with the constant term.

The value of this constant term can be picked out from the formula for Pm(x)

[v. Art. 74 (9)]. It is (−1)
m
2

1.3.5. · · · (m− 1)
2.4.6. · · ·m

; or it can be found as follows:—It

is clearly the value Pm(x) assumes when x = 0; it is, then, the coefficient of zm

in the development of (1 + z2)−
1
2 ; but

(1 + z2)−
1
2 = 1− 1

2
z2 +

1.3
2.4

z4 − 1.3.5
2.4.6

z6 +
1.3.5.7
2.4.6.8

z8 − · · ·

and the coefficient of zm, m being an even number, is (−1)
m
2

1.3.5 · · · (m− 1)
2.4.6 · · ·m

.

If m is odd Pm(x) contains only odd powers of x and terminates with the
term involving x to the first power. The coefficient of this term can be picked

out from (9) Art. 74 and is (−1)
m−1

2
3.5.7. · · ·m

2.4.6. · · · (m− 1)
; or it can be found as

follows:—It is clearly the value assumed by
dPm(x)
dx

when x = 0.

It is, then, the coefficient of zm in the development of
z

(1 + z2)
3
2

.

z

(1 + z2)
3
2

= z − 3
2
z3 +

3.5
2.4

z5 − 3.5.7
2.4.6

z7 + · · ·

and the coefficient of zm in this development is (−1)
m−1

2
3.5.7 · · ·m

2.4.6 · · · (m− 1)
, m

being an odd number.

77. To recapitulate:

Pm(x) =
1.3.5 · · · (2m− 1)

m!

[
xm − m(m− 1)

2(2m− 1)
xm−2

+
m(m− 1)(m− 2)(m− 3)

2.4.(2m− 1)(2m− 3)
xm−4

− m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)
2.4.6.(2m− 1)(2m− 3)(2m− 5)

xm−6 + · · ·
]
, (1)

m being a positive integer, is a Surface Zonal Harmonic or Legendrian of the
mth order. It is a finite sum terminating with the first power of x if m is odd,
and with the zeroth power of x if m is even.
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Pm(x) is the coefficient of the mth power of z in the development of (1 −
2xz + z2)−

1
2 into a power series. Hence if z < 1

(1− 2xz + z2)−
1
2 = P0(x) + P1(x).z + P2(x).z2 + P3(x).z3

+ P4(x).z4 + P5(x).z5 + · · ·+ Pm(x).zm + · · · . (2)

Whence

1√
r2 − 2rr1 cos θ + r2

1

=
1
r

[
P0(cos θ) +

r1

r
P1(cos θ) +

r2
1

r2
P2(cos θ) + · · ·

+
rm1
rm

Pm(cos θ) + · · ·
]

if r > r1

=
1
r1

[
P0(cos θ) +

r

r1
P1(cos θ) +

r2

r2
1

P2(cos θ) + · · ·

+
rm

rm1
Pm(cos θ) + · · ·

]
if r < r1.


(3)

z = Pm(x)

is a solution of Legendre’s Equation

(1− x2)
d2z

dx2
− 2x

dz

dx
+m(m+ 1)z = 0

when m is a positive integer.

V = rmPm(cos θ)

and V =
1

rm+1
Pm(cos θ)

are solutions of the form of Laplace’s Equation in Spherical Coördinates which
is independent of φ, namely

rD2
r(rV ) +

1
sin(θ)

Dθ(sin θDθV ) = 0. (4)

Pm(1) = 1. (5)

P2m(−x) = P2m(x). (6)

P2m+1(−x) = −P2m+1(x). (7)

P2m+1(0) = 0. (8)

P2m(0) = (−1)m
1.3.5. · · · (2m− 1)

2.4.6. · · · 2m
. (9)[

dP2m+1(x)
dx

]
x=0

= (−1)m
3.5.7. · · · (2m+ 1)

2.4.6. · · · 2m
. (10)
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For convenience of reference we write out a few Zonal Harmonics. They are
obtained by substituting successive integers for m in formula (1).

P0(x) = 1

P1(x) = x

P2(x) =
1
2

(3x2 − 1)

P3(x) =
1
2

(5x3 − 3x)

P4(x) =
1
8

(35x4 − 30x2 + 3)

P5(x) =
1
8

(63x5 − 70x3 + 15x)

P6(x) =
1
16

(231x6 − 315x4 + 105x2 − 5)

P7(x) =
1
16

(429x7 − 693x5 + 315x3 − 35x)

P8(x) =
1

128
(6435x8 − 12012x6 + 6930x4 − 1260x2 + 35).



(11)

Any Surface Zonal Harmonic may be obtained from the two of next lower
orders by the aid of the formula

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 (12)

which is easily obtained and is convenient when the numerical value of x is
given.

Differentiate (2) with respect to z and we get

−(z − x)
(1− 2xz + z2)

3
2

= P1(x) + 2P2(x).z + 3P3(x).z2 + · · ·

whence

−(z − x)
(1− 2xz + z2)

1
2

= (1− 2xz + z2)(P1(x) + 2P2(x).z + 3P3(x).z2 + · · · ).

Hence by (2)

(1− 2xz + z2)(P1(x) + 2P2(x).z + 3P3(x).z2 + · · · )
+ (z − x)(P0(x) + P1(x).z + P2(x).z2 + · · · ) = 0 (13)

(13) is identically true, hence the coefficient of each power of z must vanish.
Picking out the coefficient of zn and writing it equal to zero we have formula
(12) above.3

3For tables of Surface Zonal Harmonics v. Appendix Tables I and II.
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78. We are now able to solve completely the problem considered in Art. 9.
We were to find a solution of the differential equation

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0 (1)

subject to the condition

V =
M

(c2 + r2)
1
2

when θ = 0. (2)

We know (v. Art. 77) that

V = rmPm(cos θ)

and V =
1

rm+1
Pm(cos θ)

are solutions of (1).
For values of r < c

M

(c2 + r2)
1
2

=
M

c

[
1− 1

2
r2

c2
+

1.3
2.4

r4

c4
− 1.3.5

2.4.6
r6

c6
+ · · ·

]
. (3)

Therefore for values of r < c

V =
M

c

[
P0(cos θ)− 1

2
r2

c2
P2(cos θ)

+
1.3
2.4

r4

c4
P4(cos θ)− 1.3.5

2.4.6
r6

c6
P6(cos θ) + · · ·

]
(4)

is our required solution; because each term satisfies equation (1), and therefore
the whole value satisfies (1), and when θ = 0

Pm(cos θ) = Pm(1) = 1

[v. (5) Art. 77], and hence (4) reduces to (3) and (2) is satisfied.
For values of r > c

M

(c2 + r2)
1
2

=
M

r

[
1− 1

2
c2

r2
+

1.3
2.4

c4

r4
− 1.3.5

2.4.6
c6

r6
+ · · ·

]
(5)

= M
[1
r
− 1

2
c2

r3
+

1.3
2.4

c4

r5
− 1.3.5

2.4.6
c6

r7
+ · · ·

]
.

Therefore for values of r > c

V =
M

c

[ c
r
P0(cos θ)− 1

2
c3

r3
P2(cos θ)

+
1.3
2.4

c5

r5
P4(cos θ)− 1.3.5

2.4.6
c7

r7
P6(cos θ) + · · ·

]
(6)

is our required solution. For it satisfies (1) and reduces to (2) when θ = 0.
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79. As another example let us suppose a conductor in the form of a thin
circular disc charged with electricity, and let it be required to find the value of
the potential function at any point in space.

If the magnitude of the charge is M and the radius of the plate is a the
surface density at a point of the plate at a distance r from the centre is

σ =
M

4aπ
√
a2 − r2

and all points of the conductor are at the potential
πM

2a
. (v. Peirce’s Newtonian

Potential Function, § 61.)
The value of the potential function at a point in the axis of the plate at the

distance x from the plate is easily seen to be

V =
M

a

aw

0

rdr√
(a2 − r2)(x2 + r2)

=
M

2a
cos−1 x

2 − a2

x2 + a2
.

d

dx

(M
2a

cos−1 x
2 − a2

x2 + a2

)
= − M

a2 + x2

= −M
a2

[
1− x2

a2
+
x4

a4
− x6

a6
+ · · ·

]
if x < a,

= −M
x2

[
1− a2

x2
+
a4

x4
− a6

x6
+ · · ·

]
if x > a.

Integrating and then determining the arbitrary constant we have

M

2a
cos−1 x

2 − a2

x2 + a2
=
M

a

[π
2
− x

a
+

x3

3a3
− x5

5a5
+

x7

7a7
− · · ·

]
if x < a,

=
M

a

[a
x
− a3

3x3
+

a5

5x5
− a7

7x7
+ · · ·

]
if x > a.

We have, then, to solve the equation

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0
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subject to the conditions

V =
M

a

[
π

2
− r

a
+

r3

3a3
− r5

5a5
+

r7

7a7
− · · ·

]
when θ = 0 and r < a

and V =
M

a

[
a

r
− a3

3r3
+

a5

5r5
− a7

7r7
+ · · ·

]
when θ = 0 and r > a.

The required solution is easily seen to be

V =
M

a

[
π

2
− r

a
P1(cos θ) +

1
3
r3

a3
P3(cos θ)− 1

5
r5

a5
P5(cos θ) + · · ·

]

if r < a and θ <
π

2
,

and V =
M

a

[
a

r
− 1

3
a3

r3
P2(cos θ) +

1
5
a5

r5
P4(cos θ)− 1

7
a7

r7
P6(cos θ) + · · ·

]
if r > a.

EXAMPLES.

1. Given that if a charge M of electricity is placed on an ellipsoidal con-

ductor the surface density at any point P of the conductor is equal to
Mp

4πabc
,

where p is the distance from the centre of the conductor to the tangent plane
at P (v. Peirce, New. Pot. Func. § 61); find the value of the potential function
at any external point when the conductor is the oblate spheroid generated by

the rotation of the ellipse
x2

a2
+
y2

b2
= 1 about its minor axis.

Ans. (1) If the point is on the axis of revolution

V =
M

2
√
a2 − b2

[
sin−1

(
bx+ a2 − b2

a
√
x2 + a2 − b2

)
− sin−1

(
bx− a2 + b2

a
√
x2 + a2 − b2

)]
x being the distance from the centre.

(2) If the point is on the surface of the spheroid

V =
M

2
√
a2 − b2

[
π

2
− sin−1

(
2b2 − a2

a2

)]
=

M√
a2 − b2

[
π

2
− tan−1

(
b√

a2 − b2

)]
.
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(3) If the distance r of the point from the centre is less than
√
a2 − b2 and

θ <
π

2

V =
M√
a2 − b2

[
π

2
− r

(a2 − b2)
1
2
P1(cos θ)

+
r3

3(a2 − b2)
3
2
P3(cos θ)− r5

5(a2 − b2)
5
2
P5(cos θ) + · · ·

]
.

(4) If the distance r of the point from the centre is greater than
√
a2 − b2

V =
M√
a2 − b2

[
(a2 − b2)

1
2

r
− (a2 − b2)

3
2

3r3
P2(cos θ)

+
(a2 − b2)

5
2

5r5
P4(cos θ)− (a2 − b2)

7
2

7r7
P6(cos θ) + · · ·

]
.

2. If the conductor is the prolate spheroid generated by the rotation of the

ellipse
x2

a2
+
y2

b2
= 1 about its major axis, show that if the point is an external

point and is on the axis at a distance x from the centre,

V =
M

2
√
a2 − b2

log
x+
√
a2 − b2

x−
√
a2 − b2

.

If the point is not on the axis and r >
√
a2 − b2

V =
M√
a2 − b2

[
(a2 − b2)

1
2

r
+

(a2 − b2)
3
2

3r3
P2(cos θ)

+
(a2 − b2)

5
2

5r5
P4(cos θ) +

(a2 − b2)
7
2

7r7
P6(cos θ) + · · ·

]
.

80. As a third example we will find the value of the potential function
due to a thin homogeneous circular disc, of density ρ, thickness k, and radius a.

The value of V at a point in the axis of the disc at a distance x from its
centre is readily found and proves to be

V0 = 2πρk(
√
x2 + a2 − x) =

2M
a2

[
√
x2 + a2 − x].

If x > a√
x2 + a2 = x

(
1 +

a2

x2

) 1
2

= x

[
1 +

1
2
a2

x2
− 1.1

2.4
a4

x4
+

1.1.3
2.4.6

a6

x6
− 1.1.3.5

2.4.6.8
a8

x8
+ · · ·

]
and V0 =

2M
a

[
1
2
a

x
− 1.1

2.4
a3

x3
+

1.1.3
2.4.6

a5

x5
− 1.1.3.5

2.4.6.8
a7

x7
+ · · ·

]
.
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If x < a

√
x2 + a2 = a

(
1 +

x2

a2

) 1
2

= a

[
1 +

1
2
x2

a2
− 1.1

2.4
x4

a4
+

1.1.3
2.4.6

x6

a6
+ · · ·

]
and V0 =

2M
a

[
1− x

a
+

1
2
x2

a2
− 1.1

2.4
x4

a4
+

1.1.3
2.4.6

x6

a6
− 1.1.3.5

2.4.6.8
x8

a8
+ · · ·

]
.

Hence the solution for any external point is

V =
2M
a

[
1
2
a

r
− 1.1

2.4
a3

r3
P2(cos θ)

+
1.1.3
2.4.6

a5

r5
P4(cos θ)− 1.1.3.5

2.4.6.8
a7

r7
P6(cos θ) + · · ·

]
if r > a, and

V =
2M
a

[
1− r

a
P1(cos θ)

+
1
2
r2

a2
P2(cos θ)− 1.1

2.4
r4

a4
P4(cos θ) +

1.1.3
2.4.6

r6

a6
P6(cos θ)− · · ·

]
if r < a and θ <

π

2
.

EXAMPLES.

1. The potential function due to a homogeneous hemisphere whose axis is
taken as the polar axis, is

V =
M

a

[
a

r
+

3.1
2.4

a2

r2
P1(cos θ)

− 3.1.1
2.4.6

a4

r4
P3(cos θ) +

3.1.1.3
2.4.6.8

a6

r6
P5(cos θ)− · · ·

]
if r > a, and is

V =
M

a

[
3
2

+
3
2
r

a
P1(cos θ) +

r2

a2
P2(cos θ)

+
3.1
2.4

r3

a3
P3(cos θ)− 3.1.1

2.4.6
r5

a5
P5(cos θ) + · · ·

]
if r < a and θ >

π

2
.
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2. The potential function due to a solid sphere whose density is proportional
to the distance from a diametral plane is, at an external point,

V =
8
15
M

a

[
5.3
2.4

a

r
+

5.3.1
2.4.6

a3

r3
P2(cos θ)

− 5.3.1.1
2.4.6.8

a5

r5
P4(cos θ) +

5.3.1.1.3
2.4.6.8.10

a7

r7
P6(cos θ)− · · ·

]
.

3. The potential function due to the homogeneous oblate spheroid gener-

ated by the rotation of
x2

a2
+
y2

b2
= 1 about its minor axis is, at an external

point,

V =
3
2

M

(a2 − b2)

[
x2 + a2 − b2

2(a2 − b2)
1
2

(
sin−1 (a2 − b2 + bx)

a
√
x2 + a2 − b2

+ sin−1 (a2 − b2 − bx)
a
√
x2 + a2 − b2

)
− x
]

if the point is on the axis of the spheroid at a distance x from its centre.

V =
3M

(a2 − b2)
1
2

[
1

1.3
(a2 − b2)

1
2

r
− 1

3.5
(a2 − b2)

3
2

r3
P2(cos θ)

+
1

5.7
(a2 − b2)

5
2

r5
P4(cos θ)− · · ·

]
if r > (a2 − b2)

1
2 , and

V =
3M

(a2 − b2)
1
2

[
π

4
− r

(a2 − b2)
1
2
P1(cos θ) +

π

4
r2

(a2 − b2)
P2(cos θ)

− 1
1.3

r3

(a2 − b2)
3
2
P3(cos θ) +

1
3.5

r5

(a2 − b2)
5
2
P5(cos θ)− · · ·

]
if r < (a2 − b2)

1
2 and θ <

π

2
.

4. The potential function due to the homogeneous prolate spheroid gener-

ated by the rotation of
x2

a2
+
y2

b2
= 1 about its major axis is, at an external

point,

V =
3M

(a2 − b2)
1
2

[
1

1.3
(a2 − b2)

1
2

r
+

1
3.5

(a2 − b2)
3
2

r3
P2(cos θ)

+
1

5.7
(a2 − b2)

5
2

r5
P4(cos θ) + · · ·

]
if r > (a2 − b2)

1
2 .
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81. The method employed in the last three articles may be stated in
general as follows:—Whenever in a problem involving the solving of the special
form of Laplace’s Equation

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0,

the value of V is given or can be found for all points on the axis of X and
this value can be expressed as a sum or a series involving only whole powers
positive or negative of the radius vector of the point, the solution for a point
not on the axis can be obtained by multiplying each term by the appropriate
Zonal Harmonic, subject only to the condition that the result if a series must
be convergent.

It will be shown in the next article that Pm(cos θ) is never greater than one
nor less than minus one. Hence the series in question will be convergent for all
values of r for which the original series was absolutely convergent.

82. In addition to the form given in (1) Art. 77 for Pm(x) other forms are
often useful.

It ought to be possible to develop Pm(cos θ), which may be regarded as a
function of θ, into a Fourier’s Series, and such a development may be obtained,
though with much labor, by the methods of Chapter II.

The development in terms of cosines of multiples of θ may be obtained much
more easily by the following device.

We have seen in Art. 75 that Pm(cos θ) is the coefficient of the mth power
of z in the development of (1 − 2z cos θ + z2)−

1
2 in a power series, and that if

mod z < 1 (1− 2z cos θ+ z2)−
1
2 can be developed into such a series. We know

by the Theory of Functions that only one such series exists, so that the method
by which we may choose to obtain the development will not affect the result.

(1− 2z cos θ + z2)−
1
2 = (1− z(eθi + e−θi) + z2)−

1
2

= (1− zeθi)− 1
2 (1− ze−θi)− 1

2 .

(1−zeθi)− 1
2 may be developed into an absolutely convergent series if mod z < 1,

by the Binomial Theorem. We have

(1− zeθi)− 1
2 = 1 +

1
2
zeθi +

1.3
2.4

z2e2θi +
1.3.5
2.4.6

z3e3θi +
1.3.5.7
2.4.6.8

z4e4θi + · · ·

(1− ze−θi)− 1
2 = 1 +

1
2
ze−θi +

1.3
2.4

z2e−2θi

+
1.3.5
2.4.6

z3e−3θi +
1.3.5.7
2.4.6.8

z4e−4θi + · · ·

The product of these series will give a development for (1− 2z cos θ+ z2)−
1
2

in power series. The coefficient of zm is easily picked out, and must be equal to
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Pm(cos θ). We thus get

Pm(cos θ) =
1.3.5. · · · (2m− 1)

2.4.6. · · · 2m

[
emθi + e−mθi

+
1
2
.

2m
2m− 1

(e(m−2)θi + e−(m−2)θi)

+
1.3
2.4

.
2m(2m− 2)

(2m− 1)(2m− 3)
(e(m−4)θi + e−(m−4)θi) + · · ·

]
Pm(cos θ) =

1.3.5 · · · (2m− 1)
2.4.6. · · · 2m

[
2 cosmθ + 2

1.m
1.(2m− 1)

cos(m− 2)θ

+ 2
1.3m(m− 1)

1.2(2m− 1)(2m− 3)
cos(m− 4)θ

+ 2
1.3.5
1.2.3

m(m− 1)(m− 2)
(2m− 1)(2m− 3)(2m− 5)

cos(m− 6)θ + · · ·
]
. (1)

If m is odd the development runs down to cos θ; if m is even to cos(0),
but in that case the coefficient of cos(0), that is, the constant term, will not
contain the factor 2 which is common to all the other terms, but will be simply[

1.3.5 · · · (m− 1)
2.4.6. · · ·m

]2

.

We write out the values of Pm(cos θ) for a few values of m

P0(cos θ) = 1

P1(cos θ) = cos θ

P2(cos θ) =
1
4

(3 cos 2θ + 1)

P3(cos θ) =
1
8

(5 cos 3θ + 3 cos θ)

P4(cos θ) =
1
64

(35 cos 4θ + 20 cos 2θ + 9)

P5(cos θ) =
1

128
[63 cos 5θ + 35 cos 3θ + 30 cos θ]

P6(cos θ) =
1

512
[231 cos 6θ + 126 cos 4θ + 105 cos 2θ + 50]

P7(cos θ) =
1

1024
[429 cos 7θ + 231 cos 5θ + 189 cos 3θ + 175 cos θ]

P8(cos θ) =
1

16384
[6435 cos 8θ + 3432 cos 6θ + 2772 cos 4θ

+ 2520 cos 2θ + 1225].



(2)

Since all the coefficients in the second member of (1) are positive, and since
each cosine has unity for its maximum value it is clear that Pm(cos θ) has its
maximum value when θ = 0; but we have shown in Art. 76 that Pm(1) = 1.
Therefore Pm(cos θ) is never greater than unity if θ is real. It is also easily seen
from (1) that Pm(cos θ) can never be less than −1.
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83. Pm(x) can be very simply expressed as a derivative. We have

Pm(x) =
(2m− 1)(2m− 3) · · · 1

m!

[
xm− m(m− 1)

2.(2m− 1)
xm−2

+
m(m− 1)(m− 2)(m− 3)

2.4.(2m− 1)(2m− 3)
xm−4 − · · ·

]
xw

0

Pm(x)dx =
(2m− 1)(2m− 3) · · · 1

(m+ 1)!

[
xm+1 − (m+ 1)m

2.(2m− 1)
xm−1

+
(m+ 1)m(m− 1)(m− 2)

2.4.(2m− 1)(2m− 3)
xm−3 − · · ·

]
xw

0

2Pm(x)dx2 =
xw

0

dx

xw

0

Pm(x)dx

=
(2m− 1)(2m− 3) · · · 1

(m+ 2)!

[
xm+2 − (m+ 2)(m+ 1)

2.(2m− 1)
xm

+
(m+ 2)(m+ 1)m(m− 1)

2.4.(2m− 1)(2m− 3)
xm−2 − · · ·

]
xw

0

mPm(x)dxm =
(2m− 1)(2m− 3) · · · 1

(2m)!

[
x2m − 2m(2m− 1)

2(2m− 1)
x2m−2

+
2m(2m− 1)(2m− 2)(2m− 3)

2.4.(2m− 1)(2m− 3)
x2m−4 − · · ·

]
=

(2m− 1)(2m− 3) · · · 1
(2m)!

[
x2m −mx2m−2 +

m(m− 1)
2!

x2m−4

− m(m− 1)(m− 2)
3!

x2m−6 + · · ·
]
.

The quantity in brackets obviously differs from (x2−1)m by terms involving
lower powers of x than the mth.

Hence Pm(x) =
1.3.5 · · · (2m− 1)

(2m)!
dm

dxm
(x2 − 1)m,

or Pm(x) =
1

2mm!
dm

dxm
(x2 − 1)m. (1)

This important formula is entirely general and holds not merely when x =
cos θ, but for all values of x.

84. The last result is so important that it is worth while to confirm it by
obtaining it directly from Legendre’s Equation

(1− x2)
d2z

dx2
− 2x

dz

dx
+m(m+ 1)z = 0 (1)

v. (1) Art. 75.
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Let us differentiate (1) with respect to x a few times representing
dz

dx
by z′,

d2z

dx2
by z′′,

d3z

dz3
by z′′′, &c. We get

(1− x2)
d2z′

dx2
− 2.2x

dz′

dx
+ [m(m+ 1)− 2]z′ = 0,

(1− x2)
d2z′′

dx2
− 2.3x

dz′′

dx
+ [m(m+ 1)− 2(1 + 2)]z′′ = 0,

(1− x2)
d2z′′′

dx2
− 2.4x

dz′′′

dx
+ [m(m+ 1)− 2(1 + 2 + 3)]z′′′ = 0,

and in general

(1− x2)
d2z(n)

dx2
− 2(n+ 1)x

dz(n)

dx
+ [m(m+ 1)− 2(1 + 2 + 3 + · · ·+ n)]z(n) = 0

or (1− x2)
d2z(n)

dx2
− 2(n+ 1)x

dz(n)

dx
+m(m+ 1)− n(n+ 1)]z(n) = 0. (2)

Following the analogy of these steps it is easy to write equations that will
differentiate into (1).

Let
dz1

dx
= z,

d2z2

dx2
= z,

d3z3

dx3
= z, &c. Then

(1− x2)
d2z1

dx2
+m(m+ 1)z1 = 0

will differentiate into (1),

(1− x2)
d2z2

dx2
+ 2.1x

dz2

dx
+ [m(m+ 1)− 2.1]z2 = 0

if differentiated twice will give (1),

(1− x2)
d2z3

dx2
+ 2.2x

dz3

dx
+ [m(m+ 1)− 2(1 + 2)]z3 = 0

if differentiated three times will give (1), and in general

(1− x2)
d2zn
dx2

+ 2(n− 1)x
dzn
dx

+ [m(m+ 1)− n(n− 1)]zn = 0 (3)

if differentiated n times with respect to x will give (1).
If n = m+ 1 (3) reduces to

(1− x2)
d2zm+1

dx2
+ 2mx

dzm+1

dx
= 0, (4)

and the (m+1)st derivative with respect to x of any function of x which satisfies
(4) will be a solution of (1). (4) can be written

(1− x2)
dzm
dx

+ 2mxzm = 0
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and can be readily solved by separating the variables and integrating. v. Int.
Cal. (1) page 314. It gives

zm = C(x2 − 1)m.

Hence z =
dmzm
dxm

= C
dm(x2 − 1)m

dxm
(5)

is a solution of Legendre’s Equation (1) and agrees with the value of Pm(x)
obtained in Art. 83.

85. The equations obtained in Art. 84 are so curious and so simply related
that it is worth while to consider them a little more fully.

We have seen that

(1− x2)
d2z

dx2
+ 2mx

dz

dx
= 0 (1)

differentiates into

(1− x2)
d2z

dx2
+ 2(m− 1)x

dz

dx
+ 2mz = 0; (2)

that if we differentiate (2) m times we get Legendre’s Equation

(1− x2)
d2z

dx2
− 2x

dz

dx
+m(m+ 1)z = 0; (3)

that if we differentiate (2) 2m times we get

(1− x2)
d2z

dx2
− 2(m+ 1)x

dz

dx
= 0; (4)

that if we differentiate (2) m− n times we have

(1− x2)
d2z

dx2
+ 2(n− 1)x

dz

dx
+ [m(m+ 1)− n(n− 1)]z = 0; (5)

and that if we differentiate (2) m+ n times we have

(1− x2)
d2z

dx2
− 2(n+ 1)x

dz

dx
+ [m(m+ 1)− n(n+ 1)]z = 0. (6)

By the aid of (1) we found in the last article a particular solution of (2), namely

z = (x2 − 1)m.

If we substitute in (2) z = u(x2 − 1)m following the method illustrated fully
in Art. 18, we get as the general solution of (2)

z = A(x2 − 1)m +B(x2 − 1)m
w dx

(x2 − 1)m+1
, (7)
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A and B being arbitrary constants.w dx

(x2 − 1)m+1
is easily written out [v. formula (42) page 6. Table of Inte-

grals. Int. Cal. Appendix]. If x < 1 it vanishes when x = 0. If x > 1 it vanishes
when x =∞. If then x < 1 (7) can be written

z = A(x2 − 1)m +B(x2 − 1)m
xw

0

dx

(x2 − 1)m+1
(8)

and if x > 1

z = A(x2 − 1)m +B(x2 − 1)m
∞w

x

dx

(x2 − 1)m+1
(9)

and in these forms unnecessary arbitrary constants are avoided.
From (7) we can get the general solutions of (3), (4), (5), and (6).

z = A
dm(x2 − 1)m

dxm
+B

dm

dxm

[
(x2 − 1)m

w dx

(x2 − 1)m+1

]
(10)

is the general solution of (3).

z = A
d2m(x2 − 1)m

dx2m
+B

d2m

dx2m

[
(x2 − 1)m

w dx

(x2 − 1)m+1

]
(11)

is the general solution of (4).

z = A
dm−n(x2 − 1)m

dxm−n
+B

dm−n

dxm−n

[
(x2 − 1)m

w dx

(x2 − 1)m+1

]
(12)

is the general solution of (5).

z = A
dm+n(x2 − 1)m

dxm+n
+B

dm+n

dxm+n

[
(x2 − 1)m

w dx

(x2 − 1)m+1

]
(13)

is the general solution of (6).
In each of these forms A and B are arbitrary constants and the integral is

to be taken from 0 to x if x < 1 and from x to ∞ if x > 1.
Of course (10) must be identical with the forms already obtained in Arts. 16

and 18 as general solutions of Legendre’s Equation.
Equation (4) is so simple that it can be solved directly, and we get its solution

in the form
z = A1 +B1

w dx

(x2 − 1)m+1
(14)

which must be equivalent to (11).
Comparing (14) with (7), the solution of (2), we see that every solution of

(4) can be obtained from a solution of (2) by dividing the latter by (x2 − 1)m,
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or in other words that if we write (2)

(1− x2)
d2z

dx2
+ 2(m− 1)x

dz

dx
+ 2mz = 0, (2)

and (4) as (1− x2)
d2z1

dx2
− 2(m+ 1)x

dz1

dx
= 0 (4)

z = z1(x2 − 1)m; and the substitution of this value in (2) will give (4), and
the substitution of z1 =

z

(x2 − 1)m
in (4) will give (2).

We have, then, two ways of obtaining (4) from (2); we may differentiate (2)
2m times with respect to x, or we may replace z in (2) by z1(x2 − 1)m.

If we use the first method we have seen that Legendre’s Equation (3) is
midway between (2) and (4). That is if we differentiate (2) m times we get (3)
and if we then differentiate (3) m times we get (4). Let us see if the half-way
equation in our second process is Legendre’s Equation.

If z = y(x2 − 1)
m
2

and y = z1(x2 − 1)
m
2

z = z1(x2 − 1)m.

So that if in (2) we replace z by y(x2 − 1)
m
2 and then repeat the operation

on the resulting equation we shall get (4). Making the first substitution we find,

(1− x2)
d2y

dx2
− 2x

dy

dx
+
[
m(m+ 1)− m2

1− x2

]
y = 0, (15)

not Legendre’s Equation but a somewhat more general form. Of course its
solution is

y = A(x2 − 1)
m
2 +B(x2 − 1)

m
2

w dx

(x2 − 1)m+1
. (16)

(2) and (4) are special forms of (5) and (6). Let us try the experiment of
substituting in (5) z = y(1−x2)

n
2 and in (6) z =

y

(1− x2)
n
2

. We find that both

substitutions give the same equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+
[
m(m+ 1)− n2

1− x2

]
y = 0. (17)

The solution of (17) can be obtained from either (12) or (13) and is

y =
1

(1− x2)
n
2

{
A
dm−n(x2 − 1)m

dxm−n
+B

dm−n

dxm−n

[
(x2 − 1)m

w dx

(x2 − 1)m+1

]}
(18)

or

y = (1− x2)
n
2

{
A1

dm+n(x2 − 1)m

dxm+n
+B1

dm+n

dxm+n

[
(x2 − 1)m

w dx

(x2 − 1)m+1

]}
(19)
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which of course must be equivalent.

86. In addition to the value of Pm(x) given in (1) Art. 83 there is another
important derivative form which we shall proceed to obtain. It is

Pm(cos θ) =
(−1)m

m!
rm+1Dm

x

(
1
r

)
. (1)

We have seen in Art. 75 that
1
r

1√
1− 2

r1

r
cos θ +

r2
1

r2

can be developed into

a convergent series if r1 < r and that the (m + 1)st term of that series is
Pm(cos θ)rm1

rm+1
. Let us obtain this term by Taylor’s Theorem.

1
r

1√
1− 2

r1

r
cos θ +

r2
1

r2

=
1√

r2 − 2r1r cos θ + r2
1

=
1√

x2 + y2 + z2 − 2xr1 + r2
1

=
1√

(x− r1)2 + y2 + z2

Regarding this as a function of (x− r1) and developing according to powers
of r1 by Taylor’s Theorem we get as the (m+ 1)st term

(−1)m

m!
rm1 D

m
x

[
1√

x2 + y2 + z2

]
or

(−1)m

m!
rm1 D

m
x

(
1
r

)
.

Hence
Pm(cos θ)
rm+1

=
(−1)m

m!
Dm
x

(
1
r

)
.

87. We have now obtained four different forms for our zonal harmonic,
a polynomial in x, an expression involving cosines of multiples of θ, a form
involving an ordinary mth derivative with respect to x, and a form involving
a partial mth derivative with respect to x. We shall now get a form due to
Laplace, involving a definite integral.

πw

0

dφ

a− b cosφ
=

π

(a2 − b2)
1
2

(1)

if a2 > b2 [v. Int. Cal. page 68].
1

(1− 2xz + z2)
1
2

can be expressed in the form
1

(a2 − b2)
1
2

by taking a =

1− zx and b = z
√
x2 − 1 and no matter what value x may have z can be taken
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so small that a2 will be greater than b2. Then by (1)

1
(1− 2xz + z2)

1
2

=
1
π

πw

0

dφ

1− zx− z
√
x2 − 1. cosφ

=
1
π

πw

0

dφ

1− z(x+
√
x2 − 1. cosφ)

=
1
π

πw

0

[1 + (x+
√
x2 − 1. cosφ)z + (x+

√
x2 − 1. cosφ)2z2

+ (x+
√
x2 − 1. cosφ)3z3 + · · · ]dφ

if z is taken so small that the modulus of z(x +
√
x2 − 1. cosφ) is less than

1. But by Art. 77 (2) Pm(x) is the coefficient of zm in the development of
1

(1− 2xz + z2)
1
2

,

hence Pm(x) =
1
π

πw

0

[x+
√
x2 − 1. cosφ]mdφ. (2)

By replacing φ by π − φ in (2) we get

Pm(x) =
1
π

πw

0

[x−
√
x2 − 1. cosφ]mdφ. (3)

1
(1− 2xz + z2)

1
2

=
1
z

1(
1− 2x

1
z

+
1
z2

) 1
2

and if mod
1
z
< 1 or in other words

if mod z > 1
1(

1− 2x
1
z

+
1
z2

) 1
2

can be developed into a convergent series

involving powers of
1
z

, and the coefficient of
(1
z

)m
will be Pm(x); but this will

be the coefficient of z−m−1 in the development of
1

(1− 2xz + z2)
1
2

according to

descending powers of z, mod z being greater than 1.
If now we let a = zx − 1 and b = z

√
x2 − 1, a2 − b2 = 1 − 2xz + z2 and z

may be taken so great that a2 − b2 > 0. Then by (1)
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1
(1− 2xz + z2)

1
2

=
1
π

πw

0

dφ

zx− 1− z
√
x2 − 1. cosφ

=
1
π

πw

0

dφ

z(x−
√
x2 − 1. cosφ)

[
1− 1

z(x−
√
x2 − 1. cosφ)

]
=

1
π

πw

0

1
(x−

√
x2 − 1. cosφ)

[
z−1 +

1
(x−

√
x2 − 1. cosφ)

z−2

+
1

(x−
√
x2 − 1. cosφ)2

z−3 + · · ·
]
dφ

and the coefficient of z−m−1 is
1
π

πw

0

dφ

[x−
√
x2 − 1. cosφ]m+1

.

Hence Pm(x) =
1
π

πw

0

dφ

[x−
√
x2 − 1. cosφ]m+1

. (4)

Replace φ by π − φ and we get

Pm(x) =
1
π

πw

0

dφ

[x+
√
x2 − 1. cosφ]m+1

. (5)

88. In the problems in which we have already used Zonal Harmonics
(v. Arts. 78–81) we have been able to start with the value of the Potential
Function at any point on the axis of X, and it has been necessary to develop
the expression for V on that axis in terms of ascending or descending powers of
x. If, however, we start with the value of V in terms of θ for some given value
of r, that is on the surface of some sphere, we must develop the function of θ
in terms of zonal harmonics of cos θ (v. Art. 10), and our problem becomes the
following:—To develop a given function of cos θ in terms of zonal harmonics of
cos θ, or to develop a given function of x in terms of the functions Pm(x), x
lying between 1 and −1.

The problem resembles closely that of developing in a Fourier’s series, which
we have already considered at such length.

Let f(x) = A0P0(x) +A1P1(x) +A2P2(x) +A3P3(x) + · · · (1)

for all values of x from−1 to 1 and let it be required to determine the coefficients.
If f(x) is single-valued and has only finite discontinuities between x = −1

and x = 1 we may proceed as in Art. 19.
Let us take n + 1 terms of (1) and attempt to determine the coefficients.

Take n+ 1 values of x at equal intervals ∆x between x = −1 and x = 1 so that
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(n+ 2)∆x = 2; f(−1 + ∆x), f(−1 + 2∆x), f(−1 + 3∆x), · · · f [−1 + (n+ 1)∆x]
will be the corresponding values of f(x). Substitute these values in (1) and we
have

f(−1 + ∆x) = A0P0(−1 + ∆x) +A1P1(−1 + ∆x)
+A2P2(−1 + ∆x) + · · ·+AnPn(−1 + ∆x)

f(−1 + 2∆x) = A0P0(−1 + 2∆x) +A1P1(−1 + 2∆x)
+A2P2(−1 + 2∆x) + · · ·+AnPn(−1 + 2∆x)

...
...

...
...

...
...

...
...

f(1−∆x) = A0P0(1−∆x) +A1P1(1−∆x) +A2P2(1−∆x) + · · ·
+AnPn(1−∆x),


(2)

that is, n+ 1 equations from which in theory the n+ 1 coefficients A0, A1, · · ·
An can be determined.

Following the analogy of Art. 24 let us multiply the first equation by Pm(−1+
∆x).∆x, the second by Pm(−1+2∆x).∆x, the third by Pm(−1+3∆x).∆x, &c.,
and add the equations. The first member of the resulting equation is

k=n+1∑
k=1

f(−1 + k∆x)Pm(−1 + k∆x).∆x, (3)

and the coefficient of any A as Al in the second member is

k=n+1∑
k=1

Pm(−1 + k∆x)Pl(−1 + k∆x).∆x. (4)

If now n is indefinitely increased (3) approaches as its limiting value

1w

−1

f(x)Pm(x)dx (5)

and (4) approaches
1w

−1

Pm(x)Pl(x)dx. (6)

We have now to find the value of the integral (6) or as we shall write it for
the sake of greater convenience

1w

−1

Pm(x)Pn(x)dx.



ZONAL HARMONICS. 169

89.
1w

−1

Pm(x)Pn(x)dx =
1

2m+nm!n!

1w

−1

dm(x2 − 1)m

dxm
.
dn(x2 − 1)n

dxn
dx by

(1) Art. 83.

1w

−1

dm(x2 − 1)m

dxm
.
dn(x2 − 1)n

dxn
dx =

[
dm(x2 − 1)m

dxm
.
dn−1(x2 − 1)n

dxn−1

1]
−1

−
1w

−1

dm+1(x2 − 1)m

dxm+1
.
dn−1(x2 − 1)n

dxn−1
dx (1)

by integration by parts.
Now if z = X(x2 − 1)n

dz

dx
= 2nxX(x2 − 1)n−1 + (x2 − 1)n

dX

dx

= (x2 − 1)n−1

[
2nxX + (x2 − 1)

dX

dx

]
. (2)

Hence the pth derivative with respect to x of any function of x containing
(x2 − 1)n as a factor will contain (x2 − 1)n−p as a factor if p < n.

dn−1(x2 − 1)n

dxn−1
, then, contains (x2 − 1) as a factor and is zero when x = 1

and when x = −1, so that (1) reduces to

1w

−1

dm(x2 − 1)m

dxm
.
dn(x2 − 1)n

dxn
dx = −

1w

−1

dm+1(x2 − 1)m

dxm+1
.
dn−1(x2 − 1)n

dxn−1
dx.

It follows that
1w

−1

dm(x2 − 1)m

dxm
.
dn(x2 − 1)n

dxn
dx

= (−1)p
1w

−1

dm+p(x2 − 1)m

dxm+p
.
dn−p(x2 − 1)n

dxn−p
dx

= (−1)p
1w

−1

dm−p(x2 − 1)m

dxm−p
.
dn+p(x2 − 1)n

dxn+p
dx. (3)

If m < n we get from (3)

1w

−1

dm(x2 − 1)m

dxm
.
dn(x2 − 1)n

dxn
dx = (−1)m

1w

−1

d2m(x2 − 1)m

dx2m
.
dn−m(x2 − 1)n

dxn−m
dx

= (−1)m(2m)!
[
dn−m−1(x2 − 1)n

dxn−m−1

1]
−1

= 0,
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since
d2m(x2 − 1)m

dx2m
= (2m)!.

If m > n

1w

−1

dm(x2 − 1)m

dxm
.
dn(x2 − 1)n

dxn
dx = (−1)n

1w

−1

dm−n(x2 − 1)m

dxm−n
.
d2n(x2 − 1)n

dx2n
dx

= (−1)n(2n)!
[
dm−n−1(x2 − 1)m

dxm−n−1

1]
−1

= 0.

If, then, m is not equal to n
1w

−1

Pm(x)Pn(x)dx = 0. (4)

If m = n we have to find
1w

−1

[Pm(x)]2dx.

1w

−1

[Pm(x)]2dx =
1

22m(m!)2

1w

−1

dm(x2 − 1)m

dxm
.
dm(x2 − 1)m

dxm
dx.

1w

−1

dm(x2 − 1)m

dxm
.
dm(x2 − 1)m

dxm
dx = (−1)m

1w

−1

d2m(x2 − 1)m

dx2m
.(x2 − 1)mdx

by (3), = (−1)m(2m)!
1w

−1

(x2 − 1)mdx.

1w

−1

(x2 − 1)mdx =
1w

−1

(x− 1)m(x+ 1)mdx = − m

m+ 1

1w

−1

(x− 1)m−1(x+ 1)m+1dx

= (−1)m
m!

(m+ 1)(m+ 2) · · · 2m

1w

−1

(x+ 1)2mdx

= (−1)m
22m+1m!

(m+ 1)(m+ 2) · · · (2m+ 1)
.

Hence
1w

−1

[Pm(x)]2dx =
1

22m(m!)2

(−1)m(2m)!(−1)mm!22m+1

(m+ 1)(m+ 2) · · · (2m+ 1)

or
1w

−1

[Pm(x)]2dx =
2

2m+ 1
. (5)
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90. The solution of the problem in Art. 88 is now readily obtained, and
we have

f(x) =A0P0(x) +A1P1(x) +A2P2(x) + · · · (1)

where Am =
2m+ 1

2

1w

−1

f(x)Pm(x)dx. (2)

The function and the series are equal for all values of x from x = −1 to
x = 1, and f(x) is subject to no conditions save those which would enable us to
develop it in a Fourier’s Series. [v. Chapter III.]

Of course (1) can be written

f(cos θ) = A0P0(cos θ) +A1P1(cos θ) +A2P2(cos θ) + · · ·

where Am =
2m+ 1

2

1w

−1

f(cos θ)Pm(cos θ)d(cos θ)

or if f(cos θ) = F (θ)

F (θ) =A0P0(cos θ) +A1P1(cos θ) +A2P2(cos θ) + · · · (3)

where Am =
2m+ 1

2

πw

0

F (θ)Pm(cos θ) sin θ.dθ (4)

and the development holds good from θ = 0 to θ = π.
If f(x) is an even function, that is, if f(−x) = f(x) (1) and (2) can be

somewhat simplified. For in that case it can be easily shown (v. Art. 77) that

1w

−1

f(x)P2k(x)dx = 2
1w

0

f(x)P2k(x)dx,

and that
1w

−1

f(x)P2k+1(x)dx = 0;

so that if f(−x) = f(x)

f(x) = A0P0(x) +A2P2(x) +A4P4(x) +A6P6(x) + · · · (5)

where A2k = (4k + 1)
1w

0

f(x)P2k(x)dx. (6)

If f(x) is an odd function, that is, if f(−x) = −f(x) it can be shown in like
manner that

f(x) = A1P1(x) +A3P3(x) +A5P5(x) +A7P7(x) + · · · (7)

where A2k+1 = (4k + 3)
1w

0

f(x)P2k+1(x)dx. (8)
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If it is only necessary that the development should hold for 0 < x < 1 any
function may be expressed in form (5) or (7) at pleasure.

91. We can establish the fact that
1w

−1

Pm(x)Pn(x)dx = 0 by a more general

method than that used in Art. 89.
Let Xm be any solution of Legendre’s Equation

d

dx

[
(1− x2)

dz

dx

]
+m(m+ 1)z = 0 [v. (1) Art. 16].

which with its first derivative with respect to x is finite, continuous, and single-
valued for values of x between −1 and 1, −1 and 1 being included.

Then
d

dx

[
(1− x2)

dXm

dx

]
+m(m+ 1)Xm = 0 (1)

and
d

dx

[
(1− x2)

dXn

dx

]
+ n(n+ 1)Xn = 0 (2)

Multiply (1) by Xn and (2) by Xm and subtract and integrate and we get

[m(m+ 1)− n(n+ 1)]
1w

−1

XmXndx =
1w

−1

Xm
d

dx

[
(1− x2)

dXn

dx

]
dx

−
1w

−1

Xn
d

dx

[
(1− x2)

dXm

dx

]
dx.

Integrate by parts,

[m(m+ 1)−n(n+ 1)]
1w

−1

XmXndx =
[
Xm(1−x2)

dXn

dx
−Xn(1−x2)

dXm

dx

x=1]
x=−1

−
1w

−1

(1− x2)
dXn

dx

dXm

dx
dx+

1w

−1

(1− x2)
dXm

dx

dXn

dx
dx. (3)

Whence
1w

−1

XmXndx = 0 (4)

unless m = n.
(3) gives at once the important formula

1w

x

XmXndx =
(1− x2)

[
Xn

dXm

dx
−Xm

dXn

dx

]
m(m+ 1)− n(n+ 1)

(5)
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from which come as special cases

1w

x

Pm(x)Pn(x)dx =
(1− x2)

[
Pn(x)

dPm(x)
dx

− Pm(x)
dPn(x)
dx

]
m(m+ 1)− n(n+ 1)

(6)

and since P0(x) = 1

1w

x

Pm(x)dx =
(1− x2)

dPm(x)
dx

m(m+ 1)
, (7)

unless m = 0.

EXAMPLES.

1. Show that
1w

0

Pm(x)dx = 0 if m is even and is not zero.

= (−1)
m−1

2
1

m(m+ 1)
3.5.7. · · ·m

2.4.6. · · · (m− 1)
if m is odd.

v. Art. 91 (7) and Art. 77 (10).

2. Show that

1w

0

Pm(x)Pn(x)dx = 0 if m and n are both even or both odd.

= (−1)
m+n+1

2
m! n!

2m+n−1(m− n)(m+ n+ 1)
(m

2
!
)2 (n− 1

2
!
)2

if m is even and n odd. v. Art. 91 (6) and Art. 77 (8), (9), and (10). cf. J. W.
Strutt (Lord Rayleigh) Lond. Phil. Trans. 1870, page 579.

3. Show that
1w

0

[Pm(x)]2dx =
1

2m+ 1
v. Art. 89 (5).

92. Formula (4) Art. 91 can be obtained directly from Laplace’s Equation
by the aid of Green’s Theorem (v. Peirce’s Newt. Pot. Func. § 48).

Take the special form of Green’s Theorem, [(148) § 48 Peirce’s Newt. Pot.
Func.] y

(U∇2V − V∇2U)dxdydz =
w

(UDnV − V DnU)ds (1)

where ∇2 stands for (D2
x + D2

y + D2
2), Dn is the partial derivative along the

external normal, and the left-hand member is the space-integral through the
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space bounded by any closed surface, and the right-hand member is the surface
integral taken over the same surface. (v. Int. Cal. Chapter XIV.)

If U and V are solutions of Laplace’s Equation ∇2V = ∇2U = 0 and (1)
reduces to w

(UDnV − V DnU)ds = 0. (2)

Now rmXm and rnXn are solutions of Laplace’s Equation if x = cos θ
(v. Art. 16).

If the unit sphere is taken as the bounding surface and U = rmXm and
V = rnXn (1) and (2) will hold good.

DnU = Dr(rmXm) = mrm−1Xm,

DnV = nrn−1Xn,

ds = sin θ.dθdφ,

and (2) becomes
2πw

0

dφ

πw

0

(nXmXn −mXmXn) sin θ.dθ = 0

or 2π(n−m)
πw

0

XmXn sin θ.dθ = 0. (3)

Since x = cos θ, sin θ.dθ = −dx and (3) reduces to

1w

−1

XmXndx = 04 (4)

unless m = n.

93. We can now solve completely the problem of Art. 10 which was in
that article carried to the point where it was only necessary to develop a certain
function of θ in the form

A0P0(cos θ) +A1P1(cos θ) +A2P2(cos θ) + · · ·

given that f(θ) = 1 from θ = 0 to θ =
π

2
and f(θ) = 0 from θ =

π

2
to θ = π.

This amounts to the same thing as developing F (x) into the series

F (x) = A0P0(x) +A1P1(x) +A2P2(x) +A3P3(x) + · · ·
4It should be noted that this proof is no more general than that of the last article, for,

in order that Green’s Theorem should apply to rmXm this function and its first derivatives
must be finite continuous and single-valued within and on the surface of the unit sphere. (v.
Peirce, Newt. Pot. Func. § 48.)
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where F (x) = 0 from x = −1 to x = 0
and F (x) = 1 from x = 0 to x = 1.

By Art. 90 (1) and (2)

A0 =
1
2

1w

0

P0(x)dx =
1
2

1w

0

dx =
1
2
,

and any coefficient Am =
(2m+ 1)

2

1w

0

Pm(x)dx.

By Art. 91, Ex. 1

1w

0

Pm(x)dx = 0 if m is even

= (−1)
m−1

2
1

m(m+ 1)
3.5.7. · · ·m

2.4.6. · · · (m− 1)
if m is odd.

Hence Am = 0 if m is even

= (−1)
m−1

2
2m+ 1
2m+ 2

.
1.3.5. · · · (m− 2)
2.4.6. · · · (m− 1)

if m is odd.

Then F (x) =
1
2

+
3
4
P1(x)− 7

8
.
1
2
P3(x) +

11
12
.
1.3
2.4

P5(x)− · · · (1)

and u =
1
2

+
3
4
rP1(cos θ)− 7

8
.
1
2
r3P3(cos θ) +

11
12
.
1.3
2.4

r5P5(cos θ) + · · · (2)

for any point within the sphere.

94. If in a problem on the Potential Function the value of V is given at
every point of a spherical surface and has circular symmetry5 about a diameter
of that surface the value of V at any point in space can be obtained.

We have to solve Laplace’s Equation in the form

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0 (1)

subject to the conditions

V = f(θ) when r = a

V = 0 “ r =∞.

We have f(θ) = A0P0(cos θ) +A1P1(cos θ) +A2P2(cos θ) + · · ·

where Am =
(2m+ 1)

2

πw

0

f(θ)Pm(cos θ) sin θ.dθ. v. Art. 90 (4).

5See note on page 12.
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Hence

V = A0 +A1

( r
a

)
P1(cos θ) +A2

( r
a

)2

P2(cos θ) +A3

( r
a

)3

P3(cos θ) + · · · (2)

is the required solution for a point within the sphere, and

V = A0

(a
r

)
+A1

(a
r

)2

P1(cos θ) +A2

(a
r

)3

P2(cos θ) +A3

(a
r

)4

P3(cos θ) + · · ·
(3)

is the required solution for an external point.

EXAMPLES.

1. If on the surface of a sphere of radius c V is constant and equal to a
show that V = a for any point within the sphere and V =

ac

r
for any external

point.

2. Two equal thin hemispherical shells of radius c placed together to form
a spherical surface are separated by a thin non-conducting layer. Charges of
statical electricity are placed on the two hemispheres one of which is then found
to be at potential a and the other at potential b. Find the value of the potential
function at any point.

V =
a+ b

2
+ (b− a)

[
3
4
r

c
P1(cos θ)− 7

8
.
1
2
r3

c3
P3(cos θ)

+
11
12
.
1.3
2.4

r5

c5
P5(cos θ)− · · ·

]
for an internal point

V =
a+ b

2
.
c

r
+ (b− a)

[
3
4
c2

r2
P1(cos θ)− 7

8
.
1
2
c4

r4
P3(cos θ)

+
11
12
.
1.3
2.4

c6

r6
P5(cos θ)− · · ·

]
for an external point.

3. If V1 = f(cos θ) when r = a and V1 = 0 when r = b show that for
a < r < b

V1 =
m=∞∑
m=0

Am

(
bm+1

rm+1
− rm

bm

)(
bm+1

am+1
− am

bm

)−1

Pm(cos θ)

where Am =
2m+ 1

2

1w

−1

f(x)Pm(x)dx.
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4. If V2 = F (cos θ) when r = b and V2 = 0 when r = a show that for
a < r < b

V2 =
m=∞∑
m=0

Bm

(
rm

am
− am+1

rm+1

)(
bm

am
− am+1

bm+1

)−1

Pm(cos θ)

where Bm =
2m+ 1

2

1w

−1

F (x)Pm(x)dx.

5. If the value of the potential function is given arbitrarily on the surfaces
of a spherical shell but has circular symmetry6 about a diameter V = V1 + V2

(v. Exs. 3 and 4).

6. Two concentric hollow spherical conductors are insulated and charged.
The inner one of radius a is at potential p, and the outer one of radius b is at
potential q. Find V for any point in space.

V = p if r < a,

V =
pa

b− a

(
b

r
− 1
)

+
qb

b− a

(
1− a

r

)
if a < r < b,

V =
qb

r
if r > b.

7. If V = 0 on the base of a hemisphere and V = f(cos θ) on the convex
surface, show that for a point within the hemisphere

V =
k=∞∑
k=0

A2k+1

(
r

a

)2k+1

P2k+1(cos θ)

where A2k+1 = (4k + 3)
1w

0

f(x)P2k+1(x)dx [v. Art. 90 (8)].

8. If the convex surface of a solid hemisphere of radius a is kept at the
constant temperature unity and the base at the constant temperature zero show
that after the permanent state of temperatures is set up the temperature of any
internal point is

u =
3
2
r

a
P1(cos θ)− 7

4
.
1
2
r3

a3
P3(cos θ) +

11
6
.
1.3
2.4

r5

a5
P5(cos θ)− · · ·

9. A sphere of radius a and with blackened surface is exposed to the direct
rays of the sun in air at the temperature zero. Find the stationary temperature
of any internal point.

6See note on page 12
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Suggestion: Dru+ hu−Mf(θ) = 0 when r = a.

Let u =
∑

Am
rm

am
Pm(cos θ), and f(θ) =

∑
BmPm(cos θ).

Then we have∑
m
Am
a
Pm(cos θ) + h

∑
AmPm(cos θ)−M

∑
BmPm(cos θ) = 0,

whence Am =
MBm

h+
m

a

.

Here f(θ) = cos θ if 0 < θ <
π

2
and f(θ) = 0 if

π

2
< θ < π.

f(θ) =
1
4

+
1
2
P1(cos θ) +

5
16
P2(cos θ)− 3

32
P4(cos θ) + · · ·

+ (−1)k+1 (4k + 1)(2k)!
(4k + 4)(2k − 1)22k(k!)2

P2k(cos θ) + · · ·

v. Art. 91 Exs. (2) and (3). cf. J. W. Strutt (Lord Rayleigh), Lond. Phil. Trans.
vol. 160, page 587.

95. The formulas of Art. 90 enable us to develop a given function of x
in terms of Zonal Surface Harmonics, the development holding true for values
of x between −1 and +1. If, however, we can show by outside considerations
that a given function of x can be expressed in Zonal Surface Harmonics, the
development holding true for all values of x, the formulas of Art. 90 will give us
the development in question.

For example if n is a positive integer xn can be expressed in terms of
Zonal Surface Harmonics no matter what the value of x, and no Harmonic
of higher order than n will enter. For the formulas giving the values of P1(x),
P2(x), · · ·Pn(x) (v. Art. 77) may be regarded as n algebraic equations of the
first degree in terms of x, x2, x3, · · ·xn and P1(x), P2(x), · · ·Pn(x).

From these equations the n− 1 quantities x, x2, x3, . · · ·xn−1, can be elim-
inated, and there will result an equation of the first degree in xn and P1(x),
P2(x), · · ·Pn(x), which will enable us to express xn in the form

A0 +A1P1(x) +A2P2(x) + · · ·+AnPn(x),

no matter what the value of x, and we shall have the same formula when −1 <
x < 1 as when x > 1 or x < −1.

Let us obtain this development. By Art. 90 (1) and (2)

xn = A0P0(x) +A1P1(x) +A2P2(x) + · · · (1)

where Am =
2m+ 1

2

1w

−1

xnPm(x)dx. (2)

Then Am =
2m+ 1

2
1

2mm!

1w

−1

xn
dm(x2 − 1)m

dxm
dx by (1) Art. 83.
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By integration by parts we get

1w

−1

xn
dm(x2 − 1)m

dxm
dx = n(n− 1)(n− 2) · · · (n−m+ 1)

1w

−1

xn−m(1− x2)mdx,

if m < n+ 1, (3)
= 0 if m > n.

By integration by parts we readily obtain the reduction formula

1w

−1

xp(1− x2)qdx =
2q
p+ 1

1w

−1

xp+2(1− x2)q−1dx whence

1w

−1

xn−m(1− x2)mdx =
2mm!

(n−m+ 1)(n−m+ 3) · · · (n+m− 1)

1w

−1

xn+mdx.

1w

−1

xn+mdx =
2

(n+m+ 1)
if n+m is even,

= 0 if n+m is odd.

Hence Am =
(2m+ 1)n(n− 1)(n− 2) · · · (n−m+ 1)

(n−m+ 1)(n−m+ 3)(n−m+ 5) · · · (n+m+ 1)

if m < n+ 1 and m+ n is even,

= 0 if m > n or if m+ n is odd.

Therefore

xn =
n!

1.3.5 · · · (2n+ 1)

[
(2n+ 1)Pn(x) + (2n− 3)

(2n+ 1)
2

Pn−2(x)

+ (2n− 7)
(2n+ 1)(2n− 1)

2.4
Pn−4(x)

+ (2n− 11)
(2n+ 1)(2n− 1)(2n− 3)

2.4.6
Pn−6(x) + · · ·

]
(4)

the second member ending with the term
1

n+ 1
P0(x) if n is even and with the

term
3

n+ 2
P1(x) if n is odd.
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For convenience of reference we write out a few powers of x.

x0 = 1 = P0(x)
x = P1(x)

x2 =
2
3
P2(x) +

1
3
P0(x)

x3 =
2
5
P3(x) +

3
5
P1(x)

x4 =
8
35
P4(x) +

4
7
P2(x) +

1
5
P0(x)

x5 =
8
63
P5(x) +

4
9
P3(x) +

3
7
P1(x)

x6 =
16
231

P6(x) +
24
77
P4(x) +

10
21
P2(x) +

1
7
P0(x)

x7 =
16
429

P7(x) +
8
39
P5(x) +

14
33
P3(x) +

1
3
P1(x)

x8 =
128
6435

P8(x) +
64
495

P6(x) +
48
143

P4(x) +
40
99
P2(x) +

1
9
P0(x).



(5)

If a given function of x can be expressed as a terminating power series it
can be developed into a Zonal Harmonic Series by the aid of (4). Given that

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · ,

let f(x) = B0 +B1P1(x) +B2P2(x) +B3P3(x) + · · · ;

then picking out carefully the coefficient of Pm(x) we have

Bm =
m!

1.3.5. · · · (2m− 1)

[
am +

(m+ 1)(m+ 2)
2.(2m+ 3)

am+2

+
(m+ 1)(m+ 2)(m+ 3)(m+ 4)

2.4.(2m+ 3)(2m+ 5)
am+4 + · · ·

]
. (6)

96. The development of
dPn(x)
dx

is useful and is easily obtained.

Let
dPn(x)
dx

=A0P0(x) +A1P1(x) +A2P2(x) + · · ·

Then Am =
2m+ 1

2

1w

−1

Pm(x)
dPn(x)
dx

dx (1)

by Art. 90 (2);

1w

−1

Pm(x)
dPn(x)
dx

dx =
[
Pm(x)Pn(x)

]x=1

x=−1
−

1w

−1

Pn(x)
dPm(x)
dx

dx. (2)
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[
Pm(x)Pn(x)

]x=1

x=−1
= 0 if m+ n is even

= 2 if m+ n is odd.

Since Pn(x) is an algebraic polynomial of the nth degree in x,
dPn(x)
dx

is an

algebraic polynomial of the n− 1st degree in x. Therefore in (1) m is less than

n; consequently
dPm(x)
dx

is an algebraic polynomial in x of lower degree than n
and

1w

−1

Pn(x)
dPm(x)
dx

dx = 0 by Art. 95 (3).

We get then Am = 2m+ 1 if m+ n is odd and m < n,

= 0 if m+ n is even or m > n− 1; and

dPn(x)
dx

= (2n− 1)Pn−1(x) + (2n− 5)Pn−3(x) + (2n− 9)Pn−5(x) + · · · (3)

the second member ending with the term 3P1(x) if n is even and with the term
P0(x) if n is odd.

From (3) a number of simple formulas are readily obtained. For example

dPn+1(x)
dx

− dPn−1(x)
dx

= (2n+ 1)Pn(x) (4)

1w

x

Pn(x)dx =
1

2n+ 1
[Pn−1(x)− Pn+1(x)]. (5)

(2n+ 1)x
dPn(x)
dx

= n
dPn+1(x)

dx
+ (n+ 1)

dPn−1(x)
dx

(6)

[v. (4) and Article 77 (12)].

(x2 − 1)
dPn(x)
dx

= nxPn(x)− nPn−1(x) (7)

[v. (5) and Article 91 (7).]

97. By the aid of the formulas of Art. 96 a number of valuable develop-
ments can be obtained.

Let us get cosnθ and sinnθ, n being any positive real.
z = cosnθ and z = sinnθ are solutions of the equation

d2z

dθ2
+ n2z = 0
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or if we let x = cos θ, of the equation

(1− x2)
d2z

dx2
− xdz

dx
+ n2z = 0. (1)

Let a0P0(x) + a1P1(x) + a2P2(x) + · · ·

be the required development of cosnθ or of sinnθ.

Then
m=∞∑
m=0

am

[
(1− x2)

d2Pm(x)
dx2

− xdPm(x)
dx

+ n2Pm(x)
]

= 0 by (1).

z = Pm(x) is a solution of Legendre’s Equation (v. Art. 77). Hence

(1− x2)
d2Pm(x)
dx2

− xdPm(x)
dx

= x
dPm(x)
dx

−m(m+ 1)Pm(x),

and (1) becomes

m=∞∑
m=0

am

[
x
dPm(x)
dx

+ [n2 −m(m+ 1)]Pm(x)
]

= 0. (2)

Formulas (4) and (6) of Art. 96 enable us to throw (2) into the form

m=∞∑
m=0

am

[
n2 −m2

2m+ 1
dPm+1(x)

dx
− n2 − (m+ 1)2

2m+ 1
dPm−1(x)

dx

]
= 0. (3)

(3) must be identically true. Therefore the coefficient of
dPm+1(x)

dx
must

equal zero, and we have

am+2 =
2m+ 5
2m+ 1

.
n2 −m2

n2 − (m+ 3)2
am. (4)

If we are developing cosnθ

a0 =
1
2

πw

0

cosnθ sin θ.dθ by Art. 90 (4),

=
1
4

πw

0

[sin(n+ 1)θ − sin(n− 1)θ]dθ,

a0 = −1
2
.
1 + cosnπ
n2 − 1

; (5)

and a1 =
3
2

πw

0

cosnθ cos θ sin θ.dθ by Art. 90 (4),

a1 = −3
2
.
1− cosnπ
n2 − 4

. (6)
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(4), (5), and (6) give us

cosnθ = −1 + cosnπ
2(n2 − 1)

[
P0(cos θ) + 5

n2

n2 − 32
P2(cos θ)

+ 9
n2(n2 − 22)

(n2 − 32)(n2 − 52)
P4(cos θ) + · · ·

]
− 1− cosnπ

2(n2 − 22)

[
3P1(cos θ) + 7

n2 − 12

n2 − 42
P3(cos θ)

+ 11
(n2 − 12)(n2 − 32)
(n2 − 42)(n2 − 62)

P5(cos θ) + · · ·
]
. (7)

If n is a whole number 1 + cosnπ or 1 − cosnπ will vanish and the series will
end with the term involving Pn(cos θ). For this case (7) may be rewritten

cosnθ =
1
2
.

2.4.6. · · · 2n
3.5.7. · · · (2n+ 1)

[
(2n+ 1)Pn(cos θ)

+ (2n− 3)
n2 − (n+ 1)2

n2 − (n− 2)2
Pn−2(cos θ)

+ (2n− 7)
[n2 − (n+ 1)2][n2 − (n− 1)2]
[n2 − (n− 2)2][n2 − (n− 4)2]

Pn−4(cos θ) + · · ·
]
. (8)

If we are developing sinnθ

a0 =
1
2

πw

0

sinnθ sin θ.dθ = −1
2
.
sinnπ
n2 − 1

,

a1 =
3
2

πw

0

sinnθ cos θ sin θ.dθ =
3
2
.

sinnπ
n2 − 22

and

sinnθ = −1
2
.
sinnπ
n2 − 1

[
P0(cos θ) + 5

n2

n2 − 32
P2(cos θ)

+ 9
n2(n2 − 22)

(n2 − 32)(n2 − 52)
P4(cos θ) + · · ·

]
+

1
2
.

sinnπ
n2 − 22

[
3P1(cos θ) + 7

n2 − 12

n2 − 42
P3(cos θ)

+ 11
(n2 − 12)(n2 − 32)
(n2 − 42)(n2 − 62)

P5(cos θ) + · · ·
]
. (9)

If n is a whole number sinnπ = 0, and all the terms of (9) vanish except
those involving Pn−1(cos θ), Pn+1(cos θ), Pn+3(cos θ) &c., which become inde-
terminate. For this case it is necessary to compute an−1 independently.
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We have

an−1 =
2n− 1

2

πw

0

sinnθPn−1(cos θ) sin θ.dθ

=
2n− 1

4

πw

0

[cos(n− 1)θ − cos(n+ 1)θ]Pn−1(cos θ)dθ.

Hence an−1 =
2n− 1

4
.
1.3.5. · · · (2n− 3)
2.4.6. · · · (2n− 2)

π [v. Art. 82 (1)],

and

sinnθ =
π

4
.
1.3. · · · (2n− 3)
2.4. · · · (2n− 2)

[
(2n− 1)Pn−1(cos θ)

+ (2n+ 3)
n2 − (n− 1)2

n2 − (n+ 2)2
Pn+1(cos θ)

+ (2n+ 7)
[n2 − (n− 1)2][n2 − (n+ 1)2]
[n2 − (n+ 2)2][n2 − (n+ 4)2]

Pn+3(cos θ) + · · ·
]
. (10)

EXAMPLES.

1. Show that

csc θ =
π

2

[
1 + 5

(1
2

)2

P2(cos θ) + 9
(1.3

2.4

)2

P4(cos θ) + 13
(1.3.5

2.4.6

)2

P6(cos θ) + · · ·
]

whence

1√
1− x2

=
π

2

[
1 + 5

(1
2

)2

P2(x) + 9
(1.3

2.4

)2

P4(x) + 13
(1.3.5

2.4.6

)2

P6(x) + · · ·
]

[v. Art. 90 (4) and Art. 82].

2. Show that

ctn θ =
π

2

[
3
(1

2

)
P1(cos θ)+7

(3
4

)(1
2

)2

P3(cos θ)+11
(5

6

)(1.3
2.4

)2

P5(cos θ)+ · · ·
]

whence

1√
1− x2

=
π

2

[
3
(1

2

)
P1(x) + 7

(3
4

)(1
2

)2

P3(x) + 11
(5

6

)(1.3
2.4

)2

P5(x) + · · ·
]

[v. Art. 90 (4) and Art. 82].

3. By integrating the result of Ex. 1 and simplifying by the aid of Art. 96
(5), obtain the development
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sin−1 x =
π

2

[
3
(1

2

)2

P1(x) + 7
( 1

2.4

)2

P3(x)

+ 11
( 1.3

2.4.6

)2

P5(x) + 15
( 1.3.5

2.4.6.8

)2

P7(x) + · · ·
]

whence θ =
π

2

[
P0(cos θ)− 3

(1
2

)2

P1(cos θ)− 7
( 1

2.4

)2

P3(cos θ)

−11
( 1.3

2.4.6

)2

P5(cos θ)− · · ·
]
.

4. By integrating the result of Ex. 2 and simplifying by the aid of Art. 96
(5) obtain √

1− x2 =
π

2

[1
2
− 5
(1

4

)(1
2

)2

P2(x)− 9
(3

6

)( 1
2.4

)2

P4(x)

−13
(5

8

)( 1.3
2.4.6

)2

P6(x) + · · ·
]

whence

sin θ =
π

2

[1
2
P0(cos θ)− 5

(1
4

)(1
2

)2

P2(cos θ)− 9
(3

6

)( 1
2.4

)2

P4(cos θ)− · · ·
]
.

To make clearer the analogy of development in Zonal Harmonic Series with
development in Fourier’s Series we give on page 186 a cut representing the first
seven Surface Zonal Harmonics P1(cos θ), P2(cos θ), · · · P7(cos θ), which are of
course somewhat complicated Trigonometric curves resembling roughly cos θ,
cos 2θ, · · · cos 7θ; and on page 187, the first four successive approximations to
the Zonal Harmonic Series

1
2

+
3
4
P1(cos θ)− 7

8
.
1
2
P3(cos θ) +

11
12
.
1.3
2.4

P5(cos θ)− · · · [I]

[v. (1) Art. 93], and

π

2

[
P0(cos θ)− 3

(1
2

)2

P1(cos θ)− 7
( 1

2.4

)2

P3(cos θ)

− 11
( 1.3

2.4.6

)2

P5(cos θ)− · · ·
]

[II]

(v. Ex. 3 Art. 97).
[I] is equal to 1 from θ = 0 to θ =

π

2
, and to 0 from θ =

π

2
to θ = π; and [II]

is equal to θ from θ = 0 to θ = π.
The figures on page 187 are constructed on precisely the same principle as

those on pages 64 and 65, with which they should be carefully compared.
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The curves y = P0(cos θ), y = P1(cos θ), . . . y = P7(cos θ). (v. page 185.)

98. By applying Gauss’s Theorem (B. O. Peirce, Newt. Pot. Func. § 31)
or the special Form of Green’s Theorem,

y
∇2V dxdydz =

w
DnV ds = −4π

y
ρdxdydz,

[Peirce, N. P. F. § 49 (149)] to a box cut from an infinitely thin shell of attracting
matter by a tube of force whose end is an element of the surface of the shell we
readily obtain the important result

4πρκ = DnV1 −DnV2. (1)

where ρ is the density and κ the thickness of the shell, V1 the value of the
potential function due to the shell at an internal point and V2 its value at an
external point, and where Dn is the partial derivative along the external normal
to the outer surface of the shell.

If we have to deal with a surface distribution of matter we have only to
replace ρκ in (1) by σ where σ is the surface density, whence

4πσ = DnV1 −DnV2 (2)

(v. Peirce, N. P. F. §§ 45, 46, and 47).
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Formulas (1) and (2) enable us to solve problems in attraction when we know
the density of the attracting mass, and problems in Statical Electricity when we
know the distribution of the charge, by methods analogous to that of Art. 94.

For example let us find the value of the potential function due to a thin
material spherical shell of density ρ and radius a.

Since V must be a solution of Laplace’s Equation and must be finite both
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when r = 0 and r =∞ we have

V1 =
∑

Amr
mPm(cos θ)

V2 =
∑

Bm
1

rm+1
Pm(cos θ).

V1 and V2 must approach the same limiting values as r approaches a. Hence

Bm
am+1

= Ama
m

or Bm = Ama
2m+1.

DnV1 = DrV1 =
∑

mrm−1AmPm(cos θ),

DnV2 = DrV2 = −
∑

(m+ 1)
Ama

2m+1

rm+2
Pm(cos θ).

Therefore by (1)

4πρκ =
∑

(2m+ 1)Amam−1Pm(cos θ)

if κ is the thickness of the shell.

Let ρ = f(cos θ) =
∑

CmPm(cos θ)

where Cm =
2m+ 1

2

1w

−1

f(x)Pm(x)dx by Art. 90 (2).

Then 4πκCm = (2m+ 1)Amam−1, and

Am =
4πκCm

(2m+ 1)am−1
, and Bm =

4πκ
2m+ 1

Cma
m+2,

and V1 = 4πaκ
∑ Cm

2m+ 1
rm
am

Pm(cos θ), (3)

and V2 = 4πaκ
∑ Cm

2m+ 1
am+1

rm+1
Pm(cos θ). (4)

99. We can now get the value of the potential function due to a spherical
shell of finite thickness, provided that its density can be expressed as a sum of
terms of the form CrkPm(cos θ).

Let a be the radius of the outer surface and b be the radius of the inner
surface of the shell.

1st.—Let ρ = CrkPm(cos θ). Then for the shell of radius s and thickness ds

V1 = 4πsds
Csk

2m+ 1
rm

sm
Pm(cos θ) by (3) Art. 98,

and V2 = 4πsds
Csk

2m+ 1
sm+1

rm+1
Pm(cos θ) by (4) Art. 98.
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Then if r < b

V =
aw

b

V1 =
4πC

(2m+ 1)
(ak−m+2 − bk−m+2)

(k −m+ 2)
rmPm(cos θ), (1)

if r > a

V =
aw

b

V2 =
4πC

(2m+ 1)
(ak+m+3 − bk+m+3)

(k +m+ 3)
Pm(cos θ)
rm+1

, (2)

and if b < r < a

V =
rw

b

V2 +
aw

r

V1 =
4πC

2m+ 1

[
rk+m+3 − bk+m+3

(k +m+ 3)rm+1

+
ak−m+2 − rk−m+2

(k −m+ 2)
rm
]
Pm(cos θ). (3)

2d.—If ρ =
∑

Cmr
kPm(cos θ) the solutions will consist of sums of terms of

the forms given in (1), (2), and (3).

EXAMPLES.

1. If the shell is homogeneous

V = 2πρ(a2 − b2) if r < b,

V =
4
3
πρ(a3 − b3)

1
r

=
M

r
if r > a,

V = 2πρ
[
a2 − 2b3

3r
− r2

3

]
if b < r < a.

2. If the density is any given function of the distance from the centre

V =
M

r
if r > a, and V = a constant if r < b.

3. If the density at any point of a solid sphere is proportional to the square
of the distance from a diametral plane

V =
M

a

[
a

r
+

2
7
a3

r3
P2(cos θ)

]
if r > a.

4. If the density at any point of a solid sphere is proportional to its distance
from a diametral plane

V =
M

a

[
a

r
+

1
6
a3

r3
P2(cos θ)− 1.1

6.8
a5

r5
P4(cos θ) +

1.1.3
6.8.10

a7

r7
P6(cos θ)− · · ·

]
if r > a. Compare Ex. 2 Art. 80.
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100. We have seen in Art. 18 (c) (3) that

Qm(x) = CPm(x)
w dx

(1− x2)[Pm(x)]2
, (1)

no constant term being understood with
w dx

(1− x2)[Pm(x)]2
.

1
(1− x2)[Pm(x)]2

is a rational fraction and becomes infinite only for x = 1,

x = −1, and for the roots of Pm(x) = 0, all of which are real and lie between −1

and 1, as can be proved by the aid of the relation Pm(x) =
1

2mm!
dm(x2 − 1)m

dxm
.

If x2 > 1
∞w

x

dx

(1− x2)[Pm(x)]2
is finite and determinate and contains no

constant term. Hence if x2 > 1

Qm(x) = −Pm(x)
∞w

x

dx

(1− x2)[Pm(x)]2
= Pm(x)

∞w

x

dx

(x2 − 1)[Pm(x)]2
(2)

for the constant factor of Qm(x) has been chosen so that C = −1.
If x2 < 1 the second member of (2) is not finite and determinate, and we are

thrown back to the form (1), and C proves to be unity.
(1) gives us readily

Q0(x) =
1
2

log
1 + x

1− x
(3)

Q1(x) = −1 +
x

2
log

1 + x

1− x
(4)

if x2 < 1.
(2) gives us Q0(x) =

1
2

log
x+ 1
x− 1

(5)

Q1(x) = −1 +
x

2
log

x+ 1
x− 1

(6)

if x2 > 1.
From Art. 85 (10) it follows that

Qm(x) = C
dm

dxm

[
(x2 − 1)m

xw

0

dx

(x2 − 1)m+1

]
if x2 < 1,

= C
dm

dxm

[
(x2 − 1)m

∞w

x

dx

(x2 − 1)m+1

]
if x2 > 1.

C can be determined and is equal to
(−1)m+12mm!

(2m)!
if x2 < 1, and is equal to

(−1)m2mm!
(2m)!

if x2 > 1.

Hence Qm(x) =
(−1)m+12mm!

(2m)!
dm

dxm

[
(x2 − 1)m

xw

0

dx

(x2 − 1)m+1

]
(7)
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if x2 < 1,

and Qm(x) =
(−1)m2mm!

(2m)!
dm

dxm

[
(x2 − 1)m

∞w

x

dx

(x2 − 1)m+1

]
(8)

if x2 > 1.
(7) and (8) give us for Q0(x) and Q1(x) the values already written in (3),

(4), (5), and (6).
By the repeated application of the formula

(m+ 1)Qm+1(x)− (2m+ 1)xQm(x) +mQm−1(x) = 0, (9)

which may be obtained for the case where x2 < 1 from Art. 16 (13) and (14),
and for the case where x2 > 1 from Art. 16 (9), any Surface Zonal Harmonic
of the Second Kind can be obtained from Q0(x) and Q1(x) as given in (3), (4),
(5), and (6).

Analogous formulas for pm(x) and qm(x) can be obtained without difficulty
from Art. 16 (4) and (5). They are

(m+ 1)2qm+1(x)− (2m+ 1)xpm(x)−m2qm−1(x) = 0 (10)
and pm+1(x)+(2m+ 1)xqm(x)− pm−1(x) = 0 (11)

and they hold good for any value of m.

EXAMPLES.

1. Confirm the values of Q0(x) and Q1(x) given in Art. 100 (3), (4), (5),
and (6) by expanding them and comparing them with Art. 16 (13), (14), and (9).

2. If the value of V on the surface of a cone of revolution can be expressed
in terms of whole powers positive or negative of r, V can be found for any point
in space, cf. Art. 81.

If V =
∑(

Amr
m +

Bm
rm+1

)
when θ = α then

V =
∑(

Amr
m +

Bm
rm+1

)
Pm(cos θ)
Pm(cosα)

.

3. If V =
∑(

Amr
m +

Bm
rm+1

)
when θ = α, and V = 0 when θ = β,

V =
∑(

Amr
m +

Bm
rm+1

)[
Qm(cosβ)Pm(cos θ)− Pm(cosβ)Qm(cos θ)
Pm(cosα)Qm(cosβ)− Pm(cosβ)Qm(cosα)

]
.

4. Find V for points corresponding to values of θ between α and β when
V can be given in terms of whole powers of r for θ = α and for θ = β.
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5. Find by the method of Art. 16 solutions of Legendre’s Equation of the
form

z = 1Pm(x) = 1 +
m(m+ 1)

2
(x− 1) +

(m− 1)m(m+ 1)(m+ 2)
22(2!)2

(x− 1)2

+
(m− 2)(m− 1)m(m+ 1)(m+ 2)(m+ 3)

23(3!)2
(x− 1)3 + · · · ,

z = −1Pm(x) = 1− m(m+ 1)
2

(x+ 1) +
(m− 1)m(m+ 1)(m+ 2)

22(2!)2
(x+ 1)2

+
(m− 2)(m− 1)m(m+ 1)(m+ 2)(m+ 3)

23(3!)2
(x+ 1)3 + · · · .

If m is a whole number, 1Pm(x) = Pm(x) and −1Pm(x) = (−1)mPm(x). No
matter what the value of m, 1Pm(x) is absolutely convergent for −1 < x < 3,
and −1Pm(x) is absolutely convergent for −3 < x < 1.

6. By the aid of (7) Art. 16 show that

V =
1√
r

sin(n log r)kn(cos θ), V =
1√
r

sin(n log r)ln(cos θ),

V =
1√
r

cos(n log r)kn(cos θ), V =
1√
r

cos(n log r)ln(cos θ),

are solutions of Laplace’s Equation

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0, if

kn(x) = p− 1
2 +ni(x) = 1 +

n2 +
(1

2

)2

2!
x2 +

[
n2 +

(1
2

)2][
n2 +

(5
2

)2]
4!

x4

+

[
n2 +

(1
2

)2][
n2 +

(5
2

)2][
n2 +

(9
2

)2]
6!

x6 + · · ·

and

ln(x) = −q− 1
2 +ni(x) = x+

n2 +
(3

2

)2

3!
x3 +

[
n2 +

(3
2

)2][
n2 +

(7
2

)2]
5!

x5

+

[
n2 +

(3
2

)2][
n2 +

(7
2

)2][
n2 +

(11
2

)2]
7!

x7 + · · ·

kn(x) and ln(x) are convergent if x2 < 1, but are divergent if x2 = 1.

7. Show by the aid of Example 5 that

V =
1√
r

sin(n log r)Kn(cos θ), V =
1√
r

sin(n log r)Kn(− cos θ),

V =
1√
r

cos(n log r)Kn(cos θ), V =
1√
r

cos(n log r)Kn(− cos θ),
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are solutions of rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) = 0

if Kn(x) =1P− 1
2 +ni(x) = 1−

n2 +
(1

2

)2

2
(x− 1)

+

[
n2 +

(1
2

)2][
n2 +

(3
2

)2]
22(2!)2

(x− 1)2

−

[
n2 +

(1
2

)2][
n2 +

(3
2

)2][
n2 +

(5
2

)2]
22(3!)2

(x− 1)3 + · · ·

and

Kn(−x) =−1P− 1
2 +ni(x) = 1 +

n2 +
(1

2

)2

2
(x+ 1)

+

[
n2 +

(1
2

)2][
n2 +

(3
2

)2]
22(2!)2

(x+ 1)2

+

[
n2 +

(1
2

)2][
n2 +

(3
2

)2][
n2 +

(5
2

)2]
23(3!)2

(x+ 1)3 + · · · .

Kn(cos θ) is convergent except for θ = π, and Kn(− cos θ) is convergent except
for θ = 0.

kn(x), ln(x), Kn(x), and Kn(−x) are sometimes called Conal Harmonics.
They are particular values of z which satisfy Legendre’s Equation written in the
form

(1− x2)
d2z

dx2
− 2x

dz

dx
−
(
n2 +

1
4

)
z = 0.

For an elaborate treatment of them see E. W. Hobson on “A Class of Spherical
Harmonics of Complex Degree.” Trans. Camb. Phil. Soc., Vol. XIV.

8. If V = f(r) when θ = β,

V =
1

π
√
r

∞w

−∞
dλ

∞w

0

e
λ
2 f(eλ)

Kα(cos θ)
Kα(cosβ)

cos[α(λ− log r)]dα; if θ < β.

9. If V = f(r) when θ = β and r < a, and V = 0 when r = a,

V =
2
π

√
a

r

0w

−∞
dλ

∞w

0

e
λ
2 f(aeλ)

Kα(cos θ)
Kα(cosβ)

sinαλ sin
(
α log

r

a

)
dα; if θ < β.
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10. If V = f(r) when θ = β and a < r < b, and V = 0 when r = a and
when r = b,

V =
m=∞∑
m=1

Am
Km′(cos θ)
Km′(cosβ)

sin
[
mπ(log r − log a)

log b− log a

]
where m′ =

mπ

log b− log a
and

Am =
2

log b− log a

√
a

r

log
b
aw

0

e
x
2 f(aex)sin

mπx

log b− log a
dx; if θ < β.

11. If θ > β cos θ must be replaced by (− cos θ) in examples 8, 9, and 10.

12. If V = f(r) when θ = β, and V = 0 when θ = γ,

V =
1

π
√
r

∞w

−∞
dλ

∞w

0

e
λ
2 f(eλ)

kα(cos θ)lα(cos γ)− kα(cos γ)lα(cos θ)
kα(cosβ)lα(cos γ)− kα(cos γ)lα(cosβ)

cos[α(λ− log r)]dα;

if β < θ < γ.

13. If V = f(r) when θ = β and a < r < b, V = 0 when θ = γ and
a < r < b, and V = 0 when r = a and when r = b,

V =
m=∞∑
m=1

Am
km′(cos θ)lm′(cos γ)− km′(cos γ)lm′(cos θ)
km′(cosβ)lm′(cos γ)− km′(cos γ)lm′(cosβ)

sin
mπ(log r − log a)

log b− log a
,

where m′ =
mπ

log b− log a
and

Am =
2

log b− log a

√
a

r

log
b
aw

0

e
x
2 f(aex) sin

mπx

log b− log a
dx;

if β < θ < γ and a < r < b.

14. If V = f(r) when θ = β and a < r < b, and V = 0 when r = a and
DrV + hV = 0 when r = b,

V =
m=∞∑
m=1

Am
Kαm(cos θ)
Kαm(cosβ)

sin
(
αm log

r

a

)
, where

Am =
2(α2

m + h2b2)
α2
m(log b− log a) + hb[hb(log b− log a) + 1]

log
b
aw

0

e
x
2 f(aex) sinαmx.dx
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and αm is a root of the equation

α cos
(
α log

b

a

)
+ hb sin

(
α log

b

a

)
= 0 v. Art. 68 Ex. 5.
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CHAPTER VI.

SPHERICAL HARMONICS.

101. When we are dealing with problems in finding the potential function
due to forces which have not circular symmetry1 about an axis and are using
Spherical Coördinates, we have to solve Laplace’s Equation in the form

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) +
1

sin2 θ
D2
φV = 0 (1)

[v. (XIII) Art. 1].
To get a particular solution of (1) we shall assume as usual that V is a

product of functions each of which involves but a single variable.
Let V = R.Θ.Φ; where R involves r only, Θ involves θ only, and Φ φ only.

Substitute in (1) and we get

r

R

d2(rR)
dr2

+
1

Θ sin θ

d
(

sin θ
dΘ
dθ

)
dθ

+
1

Φ sin2 θ

d2Φ
dφ2

= 0 (2)

or
r sin2 θ

R

d2(rR)
dr2

+
sin θ

Θ

d
(

sin θ
dΘ
dθ

)
dθ

= − 1
Φ
d2Φ
dφ2

.

As the first member does not contain φ the second member cannot contain
φ, and as it contains no other variable it must be constant; call it n2. Equation
(2) is then equivalent to the two equations

d2Φ
dφ2

+ n2Φ = 0 (3)

and
r

R

d2(rR)
dr2

+
1

Θ sin θ

d
[

sin θ
dΘ
dθ

]
dθ

− n2

sin2 θ
= 0 (4)

(3) has been solved before and gives us

Φ = A cosnφ+B sinnφ (5)

[v. Art. 13(a)].
The first term of (4) does not involve θ and the second and third terms do

not involve r.

r

R

d2(rR)
dr2

must, then, be a constant; we shall call it m(m+1) as in Art. 13(c).

Then (4) breaks up into

r
d2(rR)
dr2

= m(m+ 1)R (6)

1See note, page 12.
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and
1

sin θ

d
[

sin θ
dΘ
dθ

]
dθ

+
[
m(m+ 1)− n2

sin2 θ

]
Θ = 0. (7)

(6) was solved in Art. 13(c) and gives

R = A1r
m +B1r

−m−1. (8)

If in (7) we replace cos θ by µ we get

d

dµ

[
(1− µ2)

dΘ
dµ

]
+
[
m(m+ 1)− n2

1− µ2

]
Θ = 0, (9)

the equivalent of

(1− x2)
d2z

dx2
− 2x

dz

dx
+
[
m(m+ 1)− n2

1− x2

]
z = 0, (10)

[v. (17) Art. 85], which was solved in Art. 85 for the case where m and n are
positive integers and n < m+ 1. v. (18) and (19) Art. 85.

From (19) Art. 85 we get as a particular solution of (9)

Θ = (1− µ2)
n
2
dnPm(µ)
dµn

= sinn θ
dnPm(µ)
dµn

, (11)

if we restrict ourselves to whole positive values of m and n, as we shall do
hereafter unless the contrary is explicitly stated, and suppose m not less than
n.

A second but less useful particular solution of (9) is

Θ = (1− µ2)
n
2
dnQm(µ)
dµn

.

Combining our results we have as important particular solutions of (1)

V = rm(A cosnφ+B sinnφ) sinn θ
dnPm(µ)
dµn

, (12)

and V =
1

rm+1
(A cosnφ+B sinnφ) sinn θ

dnPm(µ)
dµn

, (13)

where m and n are positive integers and n < m+ 1.

102. sinn θ
dnPm(µ)
dµn

or (1 − µ2)
n
2
dnPm(µ)
dµn

is a new function of µ, that

is of cos θ, and we shall represent it by Pnm(µ)2 and shall call it an associated
function of the nth order and mth degree. It is a value of Θ satisfying equation
(9) Art. 101.

2Most of the English writers represent this function by Tnm(µ).
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By differentiating the value of Pm(x) given in (9) Art. 74 we get the formula

Pnm(µ) =
(2m)! sinn θ

2mm!(m− n)!

[
µm−n − (m− n)(m− n− 1)

2.(2m− 1)
µm−n−2

+
(m− n)(m− n− 1)(m− n− 2)(m− n− 3)

2.4.(2m− 1)(2m− 3)
µm−n−4 − · · ·

]
(1)

the expression in the parenthesis ending with the term involving µ0 if m− n is
even and with the term involving µ if m− n is odd.

For convenience of reference we give on the next page a table from which
Pnm(µ) can be readily obtained for values of m and n from 1 to 8.

cosnφPnm(µ) and sinnφPnm(µ), that is,

cosnφ sinn θ
dnPm(µ)
dµn

and sinnφ sinn θ
dnPm(µ)
dµn

are called Tesseral Harmonics of the mth degree and nth order, and are values
of V which satisfy the equation

m(m+ 1)V +
1

sin θ
Dθ(sin θDθV ) +

1
sin2 θ

D2
φV = 0 (2)

or its equivalent

m(m+ 1)V +Dµ[(1− µ2)DµV ] +
1

1− µ2
D2
φV = 0. (3)

There are obviously 2m+ 1 Tesseral Harmonics of the mth degree, namely

Pm(µ), cosφ sin θ
dPm(µ)
dµ

, sinφ sin θ
dPm(µ)
dµ

cos 2φ sin2 θ
d2Pm(µ)
dµ2

, sin 2φ sin2 θ
d2Pm(µ)
dµ2

cos 3φ sin3 θ
d3Pm(µ)
dµ3

, sin 3φ sin3 θ
d3Pm(µ)
dµ3

. . . . . . . . . . . . .

cosmφ sinm θ
dmPm(µ)
dµm

, sinmφ sinm θ
dmPm(µ)
dµm

If each of these is multiplied by a constant and their sum taken, this sum
is called a Surface Spherical Harmonic of the mth degree, and is a solution of
equations (2) and (3). We shall represent it by Ym(µ, φ) or by Ym(θ, φ).
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Table for cscn θPnm(µ) =
dnPm(µ)
dµn

.

m n = 1. n = 2.

1 1

2 3µ 3

3
3

2
(5µ2 − 1) 15µ

4
5

2
(7µ3 − 3µ)

15

2
(7µ2 − 1)

5
15

8
(21µ4 − 14µ2 + 1)

105

2
(3µ3 − µ)

6
21

8
(33µ5 − 30µ3 + 5µ)

105

8
(33µ4 − 18µ2 + 1

7
7

16
(429µ6 − 495µ4 + 135µ2 − 5)

63

8
(143µ5 − 110µ3 + 15µ)

8
9

16
(715µ7 − 1001µ5 + 385µ3 − 35µ)

315

16
(143µ6 − 143µ4 + 33µ2 − 1)

m n = 3. n = 4.

1

2

3 15

4 105µ 105

5
105

2
(9µ2 − 1) 945µ

6
315

2
(11µ3 − 3µ)

945

2
(11µ2 − 1)

7
315

8
(143µ4 − 66µ2 + 3)

3465

2
(13µ3 − 3µ)

8
3465

8
(39µ5 − 26µ3 + 3µ)

10395

8
(65µ4 − 26µ2 + 1)
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m n = 5. n = 6. n = 7. n = 8.

1

2

3

4

5 945

6 10395µ 10395

7
10395

2
(13µ2 − 1) 135135µ 135135

8
135135

2
(5µ3 − µ)

135135

2
(15µ2 − 1) 2027025µ 2027025

rmYm(µ, φ) and
1

rm+1
Ym(µ, φ) are called Solid Spherical Harmonics of the

mth degree, and are solutions of Laplace’s Equation (1) Art. 101.
To formulate:—

Ym(µ, φ) =
n=m∑
n=0

[
An cosnφ sinn θ

dnPm(µ)
dµn

+Bn sinnφ sinn θ
dnPm(µ)
dµn

]
(4)

or Ym(µ, φ) = A0Pm(µ) +
n=m∑
n=1

[An cosnφPnm(µ) +Bn sinnφPnm(µ)] (5)

is a Surface Spherical Harmonic of the mth degree.
A Tesseral Harmonic is a special case of a Surface Spherical Harmonic, and a

Zonal Harmonic a special case of a Tesseral Harmonic; Pm(µ) being the Tesseral
Harmonic of the zeroth order and the mth degree; it might be written P 0

m(µ).

EXAMPLES.

1. Show that

(1− x2)
d2z

dx2
− 2x

dz

dx
+
[
m(m+ 1)− n2

1− x2

]
z = 0

reduces to

(1− x2)
d2y

dx2
− 2(n+ 1)x

dy

dx
+ [m(m+ 1)− n(n+ 1)]y = 0

if we substitute (1− x2)
n
2 y for z, even when m and n are unrestricted.
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2. Show that if in the second equation of Ex. 1 we let y =
∑
akx

k we get

ak+2 = − (m− n− k)(m+ n+ 1 + k)
(k + 1)(k + 2)

ak (v. Art. 16)

whence z = pnm(x) and z = qnm(x) are solutions of the first equation of Ex. 1, no
matter what the values of m and n, if

pnm(x) = (1− x2)
n
2

[
1− (m− n)(m+ n+ 1)

2!
x2

+
(m− n)(m− n− 2)(m+ n+ 1)(m+ n+ 2)

4!
x4 − · · ·

]
and

qnm(x) = (1− x2)
n
2

[
x− (m− n− 1)(m+ n+ 2)

3!
x3

+
(m− n− 1)(m− n− 3)(m+ n+ 2)(m+ n+ 4)

5!
x5 − · · ·

]
.

If m − n is a positive integer, pnm(x) or qnm(x) will terminate with the term
involving xm−n, and in that case

z = (1− x2)
n
2

[
xm−n − (m− n)(m− n− 1)

2.(2m− 1)
xm−n−2

+
(m− n)(m− n− 1)(m− n− 2)(m− n− 3)

2.4.(2m− 1)(2m− 3)
xm−n−4 − · · ·

]
.

the parenthesis ending with a term involving x0 if m−n is even and x if m−n
is odd, is a solution of the first equation of Ex. 1. If m and n are integers this

value of z is
2mm!(m− n)!

(2m)!
Pnm(x).

103. We have seen in the last chapter that in many problems it is im-
portant to be able to express a given function of cos θ, that is of µ, in terms of
Zonal Harmonics of µ. So it is often desirable to express a given function of µ
and φ in terms of Tesseral Harmonics of µ and φ.

If, for example, we are trying to find the Potential Function due to certain
forces and have the value of the function given for some given value of r, that is,
on the surface of some given sphere whose centre is at the origin of coördinates,
of course the given value will be a function of θ and φ and if we can express it
in terms of Spherical Harmonics of θ and φ we have only to multiply each term
by the proper power of r to get the required solution of the problem. For we
shall then have a value of V satisfying Laplace’s Equation and reducing to the
given function of θ and φ on the surface of the given sphere.
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104. Suppose that we have a function of µ and φ given for all points on
the unit sphere, that is, for all values of µ from −1 to 1 and for all values of φ
from 0 to 2π, µ and φ being independent variables, and that we wish to express
it in terms of Surface Spherical Harmonics.

Assume that

f(µ, φ)=
m=∞∑
m=0

[
A0,mPm(µ)+

n=m∑
n=1

(
An,m cosnφPnm(µ) +Bn,m sinnφPnm(µ)

)]
. (1)

Let us consider first a finite case, and attempt to determine the coefficients
so that

f(µ, φ)=
m=p∑
m=0

[
A0,mPm(µ)+

n=m∑
n=1

(
An,m cosnφPnm(µ) +Bn,m sinnφPnm(µ)

)]
(2)

shall hold good at as many points of the sphere as possible. The expression in
brackets in the second member of (2) is a Surface Spherical Harmonic of the
mth degree and contains 2m + 1 constant coefficients. The whole number of
coefficients to be determined is then the sum of an Arithmetical Progression of
p + 1 terms the first term of which is 1 and the last is 2p + 1, and is therefore
equal to (p+ 1)2.

Let the interval from µ = −1 to µ = 1 be divided into p + 2 parts each of
which is ∆µ so that (p + 2)∆µ = 2, and let the interval from φ = 0 to φ = 2π
be divided into p+ 2 parts each of which is ∆φ so that (p+ 2)∆φ = 2π.

Then if we substitute in equation (2) in turn the values (−1 + ∆µ, ∆φ),
(−1 + 2∆µ, ∆φ), · · · [−1 + (p+ 1)∆µ, ∆φ]; (−1 + ∆µ, 2∆φ), (−1 + 2∆µ, 2∆φ),
· · · [−1 + (p + 1)∆µ, 2∆φ]; · · · [−1 + ∆µ, (p + 1)∆φ], [−1 + 2∆µ, (p + 1)∆φ],
· · · [−1+(p+1)∆µ, (p+1)∆φ]; since the first member in each case will be known
we shall have (p+1)2 equations of the first degree containing no unknown except
the (p+1)2 coefficients, and from them the coefficients can be determined. When
they are substituted in equation (2) it will hold good at the (p+1)2 points of the
unit sphere where p+ 1 circles of latitude whose planes are equidistant intersect
p+1 meridians which divide the equator into equal arcs. If now p is indefinitely
increased the limiting values of the coefficients will be the coefficients in equation
(1), and (1) will hold good all over the surface of the unit sphere.

To determine any particular constant we multiply each of our (p+ 1)2 equa-
tions by ∆µ∆φ times the coefficient of the constant in question in that equation
and add the equations and then investigate the limiting form approached by the
resulting equation as p is indefinitely increased.

As p is indefinitely increased the summation in question will approach an
integration; and since dµdφ = − sin θ.dθdφ is the element of surface of the unit
sphere, and as the limits −1 and 1 of µ correspond to π and 0 of θ the integration
is a surface integration over the surface of the unit sphere.

In determining any coefficient as An,m in (1) the first member of the limiting
form of our resulting equation will be

2πw

0

dφ

1w

−1

f(µ, φ) cosnφPnm(µ)dµ.
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In the second member we shall come across terms of the forms

2πw

0

dφ

1w

−1

sin lφ cosnφP l
m(µ)Pnm(µ)dµ,

2πw

0

dφ

1w

−1

cos lφ cosnφP l
m(µ)Pnm(µ)dµ,

2πw

0

dφ

1w

−1

sinnφ cosnφ[Pnm(µ)]2dµ,
2πw

0

dφ

1w

−1

cos2 nφ[Pnm(µ)]2dµ,

and other terms all of which come under the form

2πw

0

dφ

1w

−1

Yl(µ, φ)Ym(µ, φ)dµ,

where Ym(µ, φ) and Yl(µ, φ) are Surface Spherical Harmonics of different de-
grees.

If we are determining a coefficient Bn,m the only difference is that sinnφ
and cosnφ will be interchanged in the forms just specified.

105. The integral over the surface of the unit sphere of the product of two
Surface Spherical Harmonics of different degrees is zero.

That is
2πw

0

dφ

1w

−1

Yl(µ, φ)Ym(µ, φ)dµ = 0. (1)

For as we have seen U = rlYl(µ, φ) and V = rmYm(µ, φ) are solutions of
Laplace’s Equation. Hence by Green’s Theorem

w
(UDnV − V DnU)ds = 0 v. Art. 92.

DnV =DrV = mrm−1Ym(µ, φ),

DnU = DrU = lrl−1Yl(µ, φ);

UDnV − V DnU = (m− l)rl+m−1Yl(µ, φ)Ym(µ, φ),
= (m− l)Yl(µ, φ)Ym(µ, φ)

on the surface of the unit sphere; and

(m− l)
w
Yl(µ, φ)Ym(µ, φ)ds = (m− l)

2πw

0

dφ

1w

1

Yl(µ, φ)Ym(µ, φ)dµ = 0.

Hence unless l = m

2πw

0

dφ

1w

−1

Yl(µ, φ)Ym(µ, φ)dµ = 0.
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EXAMPLES.

1. Obtain (1) Art. 105 directly from the equation

m(m+ 1)Ym(µ, φ) +Dµ[(1− µ2)DµYm(µ, φ)] +
1

1− µ2
D2
φYm(µ, φ) = 0

v. (3) Art. 102, and Art. 91.

2. Show that the integral over the surface of the unit sphere of the product
of two Tesseral Harmonics of the same degree but of different orders is zero.

Suggestion:
2πw

0

sin kφ cos lφ.dφ =
2πw

0

sin kφ sin lφ.dφ =
2πw

0

cos kφ cos lφ.dφ = 0.

106.

1w

−1

Pnl (µ)Pnm(µ)dµ = 0 unless l = m

=
2

2m+ 1
(m+ n)!
(m− n)!

if l = m.

For
1w

−1

Pnl (µ)Pnm(µ)dµ =
1w

−1

(1− µ2)n
dnPl(µ)
dµn

.
dnPm(µ)
dµn

dµ

= (1− µ2)n
dnPm(µ)
dµn

.
dn−1Pl(µ)
dµn−1

1]
−1

−
1w

−1

dn−1Pl(µ)
dµn−1

.
d

dµ

[
(1− µ2)n

dnPm(µ)
dµn

]
dµ,

= −
1w

−1

dn−1Pl(µ)
dµn−1

.
d

dµ

[
(1− µ2)n

dnPm(µ)
dµn

]
dµ;

by integration by parts.
Replacing n by n− 1 in equation (2) Art. 84 and remembering that

dn−1Pm(x)
dxn−1

is a possible value of z(n−1) we get

(1− µ2)
dn+1Pm(µ)
dµn+1

− 2nµ
dnPm(µ)
dµn

+ [m(m+ 1)− n(n− 1)]
dn−1Pm(µ)
dµn−1

= 0,

or if we multiply by (1− µ2)n−1

(1− µ2)n
dn+1Pm(µ)
dµn+1

− 2nµ(1− µ2)n−1 d
nPm(µ)
dµn

+ (m+ n)(m− n+ 1)(1− µ2)n−1 d
n−1Pm(µ)
dµn−1

= 0,
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or

d

dµ

[
(1− µ2)n

dnPm(µ)
dµn

]
= −(m+ n)(m− n+ 1)(1− µ2)n−1 d

n−1Pm(µ)
dµn−1

.

Hence follows the reduction formula

1w

−1

(1− µ2)n
dnPl(µ)
dµn

.
dnPm(µ)
dµn

dµ

= (m+ n)(m− n+ 1)
1w

−1

(1− µ2)n−1 d
n−1Pl(µ)
dµn−1

.
dn−1Pm(µ)
dµn−1

dµ.

Using this formula n times we get

1w

−1

Pnl (µ)Pnm(µ)dµ =
(m+ n)!
(m− n)!

1w

−1

Pl(µ)Pm(µ)dµ

= 0 unless l = m

=
2

2m+ 1
(m+ n)!
(m− n)!

if l = m

v. Art. 89 (4) and (5).

107. We are now able to complete the solution of the problem in Art. 104

and since
2πw

0

cos2 nφ.dφ =
2πw

0

sin2 nφ.dφ = π and
2πw

0

dφ = 2π we get as the

coefficients in (1) Art. 104

A0,m =
2m+ 1

4π

2πw

0

dφ

1w

−1

f(µ, φ)Pm(µ)dµ, (1)

An,m =
2m+ 1

2π
.
(m− n)!
(m+ n)!

2πw

0

dφ

1w

−1

f(µ, φ) cosnφPnm(µ)dµ, (2)

Bn,m =
2m+ 1

2π
.
(m− n)!
(m+ n)!

2πw

0

dφ

1w

−1

f(µ, φ) sinnφPnm(µ)dµ, (3)

whence

f(µ, φ) =
m=∞∑
m=0

[
A0,mPm(µ) +

n=m∑
n=1

(An,m cosnφ+Bn,m sinnφ)Pnm(µ)
]

(4)

and the development holds good for all values of µ and φ corresponding to points
on the unit sphere, provided only that the given function satisfies the conditions
that would have to be satisfied if it were to be developed into a Fourier’s Series.
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If we use µ1 and φ1 in place of µ and φ in (1), (2), and (3), we can write (4)
in the form

f(µ, φ) =
1

2π

m=∞∑
m=0

(2m+ 1)
[

1
2

2πw

0

dφ1

1w

−1

f(µ1, φ1)Pm(µ)Pm(µ1)dµ1

+
n=m∑
n=1

(m− n)!
(m+ n)!

2πw

0

dφ1

1w

−1

f(µ1, φ1)Pnm(µ)Pnm(µ1) cosn(φ− φ1)dµ1

]
. (5)

Formulas (1), (2), (3), and (4) are convenient for actual work; (5) is rather
more compactly written.

108. As an example let us express sin2 θ cos2 θ sinφ cosφ in terms of Sur-
face Spherical Harmonics.

Here f(µ, φ) =
1
2
µ2(1− µ2) sin 2φ.

A0,m =
2m+ 1

8π

1w

−1

µ2(1− µ2)Pm(µ)dµ
2πw

0

sin 2φ.dφ = 0,

An,m =
2m+ 1

4π
.
(m− n)!
(m+ n)!

1w

−1

µ2(1− µ2)Pnm(µ)dµ
2πw

0

sin 2φ cosnφ.dφ = 0,

Bn,m =
2m+ 1

4π
.
(m− n)!
(m+ n)!

1w

0

µ2(1− µ2)Pnm(µ)dµ
2πw

0

sin 2φ sinnφ.dφ,

= 0 unless n = 2.

If n = 2
2πw

0

sin 2φ sinnφ.dφ =
2πw

0

sin2 2φ.dφ = π, and

B2,m =
2m+ 1

4
.
(m− 2)!
(m+ 2)!

1w

−1

µ2(1− µ2)2 d
2Pm(µ)
dµ2

dµ

=
1

2mm!
2m+ 1

4
(m− 2)!
(m+ 2)!

1w

−1

µ2(1− µ2)2 d
m+2(µ2 − 1)m

dµm+2
dµ.

1w

−1

µ2(1− µ2)2 d
m+2(µ2 − 1)m

dµm+2
dµ = 720

1w

−1

dm−4(µ2 − 1)m

dµm−4
dµ
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by repeated integration by parts,

= 0 if m > 4,

= 720
1w

−1

(µ2 − 1)4dµ =
4096

7
if m = 4,

and B2,4 =
1

244!
.
9
4
.
2!
6!
.
4096

7
=

1
105

.

By a like process we find

B2,3 = 0 and B2,2 =
1
42
. Hence

sin2 θ cos2 θ sinφ cosφ =
1
42
P 2

2 (µ) sin 2φ+
1

105
P 2

4 (µ) sin 2φ, (1)

=
1
42

sin 2φ sin2 θ
d2P2(µ)
dµ2

+
1

105
sin 2φ sin2 θ

d2P4(µ)
dµ2

, (2)

=
1
14

sin2 θ sin 2φ+
1
14

sin2 θ(7µ2 − 1) sin 2φ. (3)

The required expression might have been obtained without using the formu-
las of Art. 107, by a very simple device, as follows:

sin2 θ cos2 θ sinφ cosφ =
1
2
µ2 sin2 θ sin 2φ. (4)

If now we can express µ2 in the form
∑ d2Pm(µ)

dµ2
the work will be done.

µ2 =
1

4.3
d2(µ4)
dµ2

,

µ4 =
8
35
P4(µ) +

4
7
P2(µ) +

1
5
P0(µ), (5) Art. 95.

d2(µ4)
dµ2

=
8
35
d2P4(µ)
dµ2

+
4
7
d2P2(µ)
dµ2

;

whence µ2 =
2

105
d2P4(µ)
dµ2

+
1
21
d2P2(µ)
dµ2

,

and substituting this value in (4) we get (2).

EXAMPLES.

1. Show that

cos3 θ sin3 θ sinφ cos2 φ =
[

1
6930

P 3
6 (µ) +

1
1540

P 3
4 (µ)

]
sin 3φ

−
[

2
693

P 1
6 (µ)− 1

770
P 1

4 (µ)− 1
63
P 1

2 (µ)
]

sinφ.
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2. Show that

cos 2φ = 2 cos 2φ
[

5
4!
P 2

2 (µ) +
9.2!
6!
P 2

4 (µ) +
13.4!

8!
P 2

6 (µ) + · · ·
]
.

3. If in a problem on the Potential Function V = f(µ, φ) when r = a, we
shall obviously have

V =
m=∞∑
m=0

rm

am

[
A0,mPm(µ) +

n=m∑
n=1

(An,m cosnφ+Bn,m sinnφ)Pnm(µ)
]

at an internal point and

V =
m=∞∑
m=0

am+1

rm+1

[
A0,mPm(µ) +

n=m∑
n=1

(An,m cosnφ+Bn,m sinnφ)Pnm(µ)
]

at an external point, where A0,m, An,m, and Bn,m have the values given in (1),
(2), and (3) Art. 107.

4. Solve problems (3), (4), and (5) of Art. 94 for the case where V is not
symmetrical with respect to an axis.

109. Any Solid Spherical Harmonic rmYm(µ, φ) being a value of V that
satisfies Laplace’s Equation in Spherical Coördinates will transform into a func-
tion of x, y, and z satisfying ∇2V = 0 if we change to a set of rectangular axes
having the same origin and the same axis of X as the polar system. Moreover
the new function will be a homogeneous rational integral Algebraic function of
x, y, z, of the mth degree.

For each term of rm cosnφPnm(µ) is of the form

Crm cosn−2k φ sin2k φ sinn θ cosm−2l−n θ

where 2k < n+ 1 and 2l < m− n+ 1.

This may be written

Cr2l.rm−2l−n cosm−2l−n θ.rn−2k sinn−2k θ cosn−2k φ.r2k sin2k θ sin2k φ

which becomes C(x2 + y2 + z2)lxm−2l−nyn−2kz2k,

and is a homogeneous rational integral Algebraic function of x, y, and z of the
mth degree. The same thing may be shown of each term of rm sinnφPnm(µ).
Consequently rmYm(µ, φ) is a homogeneous rational integral Algebraic function
of the mth degree in x, y, and z.
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110. Any homogeneous rational integral Algebraic function Sm(x, y, z) of
the mth degree in x, y, and z, which is a value of V satisfying ∇2V = 0 contains
2m+ 1 arbitrary constant coefficients.

For Sm(x, y, z) will in general consist of
(m+ 1)(m+ 2)

2
terms and will there-

fore contain
(m+ 1)(m+ 2)

2
coefficients.

∇2Sm(x, y, z) will be homogeneous of the (m− 2)d degree and will contain
m(m− 1)

2
coefficients, which, of course, will be functions of the coefficients

in Sm(x, y, z). Since ∇2Sm(x, y, z) = 0 independently of the numerical values

of x, y, and z the
m(m− 1)

2
coefficients in ∇2Sm(x, y, z) must be separately

zero, and that fact will give us
m(m− 1)

2
equations of condition between the

(m+ 1)(m+ 2)
2

original coefficients and will leave
(m+ 1)(m+ 2)

2
−m(m− 1)

2
or 2m+ 1 of them undetermined. Sm(x, y, z) contains, then, the same number
of arbitrary coefficients as rmYm(µ, φ).

We can then choose the coefficients in rmYm(µ, φ) so that it will transform
into any given Sm(x, y, z).

Consequently a Solid Spherical Harmonic of the mth degree might be defined
as a homogeneous rational integral Algebraic function of x, y, and z, Sm(x, y, z),
of the mth degree satisfying the equation ∇2Sm(x, y, z) = 0; and a Surface
Spherical Harmonic of the mth degree as such a function divided by (x2 + y2 +
z2)

m
2 , that is by rm.

EXAMPLES.

1. Show that if Sm(x, y, z) is a Solid Spherical Harmonic of the mth degree

∇2[rnSm(x, y, z)] = n(2m+ n+ 1)rn−2Sm(x, y, z).

Suggestion:

∇2Sm = 0. ∇2r =
2
r
. DrSm =

mSm
r

. (Dxr)2 + (Dyr)2 + (Dzr)2 = 1.

2. Show that if fn(x, y, z) is a rational integral homogeneous function of x,
y, and z of the nth degree it can be expressed in the form

fn(x, y, z) = Sn(x, y, z) + r2Sn−2(x, y, z) + r4Sn−4(x, y, z) + · · · , (1)

terminating with rn−1S1(x, y, z) if n is odd, and with rnS0(x, y, z) if n is even.

Suggestion: If a term rSn−1 were present in the second member of (1), and
we were to operate with ∇2 on both members we should by Ex. 1 have a term
2n
r
Sn−1 which would be irrational when all the other terms of the resulting
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equation were rational. No such term, then, could occur. In the same way it
may be shown by operating twice on (1) with ∇2 that there can be no term
r3Sn−3 in (1); and thus step by step we can reach the result formulated in (1).

3. Express x2yz in the form S4 + r2S2 + r4S0.

Suggestion: let x2yz = S4 + r2S2 + r4S0

and take ∇2 of both members we get

2yz = 14S2 + 20r2S0.

Operate again with ∇2. 0 = 120S0. Whence

S0 = 0, S2 =
1
7
yz, and S4 =

1
7

(6x2 − y2 − z2)yz.

4. Express sin2 θ cos2 θ sinφ cosφ in terms of Surface Spherical Harmonics.

Suggestion: sin2 θ cos2 θ sinφ cosφ =
x2yz

r4
.

For result v. Art. 108 (3).

111. A transformation of coördinates to a new set of axes having the
same origin as the old set will change a given Surface Spherical Harmonic into
another of the same degree. For such a transformation does not change the
form of Laplace’s Equation ∇2V = 0 if both sets of axes are rectangular, and it
is effected by replacing x, y, and z in the Solid Harmonic corresponding to the
given Surface Harmonic by x cosα1 + y cosα2 + z cosα3, x cosβ1 + y cosβ2 +
z cosβ3 and x cos γ1 + y cos γ2 + z cos γ3 respectively where the cosines are the
direction cosines of the new axes, and it will leave the function a homogeneous
function of the mth degree in the new variables, and on dividing this by the
mth power of the unchanged radius vector we shall have a Surface Spherical
Harmonic of the mth degree.

112. We have seen in Art. 75 that if (x1, y1, z1) are the coördinates of a
given point

V =
1√

(x− x1)2 + (y − y1)2 + (z − z1)2
(1)

is a solution of Laplace’s Equation ∇2V = 0, and transforming to spherical
coördinates that

V =
1√

r2 − 2rr1[cos θ cos θ1 + sin θ sin θ1 cos(φ− φ1)] + r2
1

(2)

is a solution of

rD2
r(rV ) +

1
sin θ

Dθ(sin θDθV ) +
1

sin2 θ
D2
φV = 0. (3)
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If γ is the angle between the radii vectores r and r1 of the points (x, y, z)
and (x1, y1, z1) (1) can be written

V =
1√

r2 − 2rr1 cos γ + r2
1

(4)

which must be equivalent to (2), and hence

cos γ = cos θ cos θ1 + sin θ sin θ1 cos(φ− φ1).

(4) which is a solution of (3) is of the same form as (5) Art. 75 and by developing
it as we developed (5) Art. 75 we find that

V = Pm(cos γ)

is a solution of the equation

m(m+ 1)V +
1

sin θ
Dθ(sin θDθV ) +

1
sin2 θ

D2
φV = 0 (5)

and that V = rmPm(cos γ) and V =
1

rm+1
Pm(cos γ)

are solutions of (3).
If we transform our coördinates keeping the origin unchanged and taking as

our new polar axis the radius vector of (x1, y1, z1) γ becomes our new θ and
Pm(cos γ) reduces to Pm(cos θ), a Surface Zonal Harmonic, or a Legendrian,3

of the mth degree. It is then a Legendrian having for its axis not the original
polar axis but the radius vector of (x1, y1, z1). Since a Legendrian is a Surface
Spherical Harmonic,

Pm(cos γ) = Pm[cos θ cos θ1 + sin θ sin θ1 cos(φ− φ1)]

is a Surface Spherical Harmonic of the mth degree.
It is, however, of very special form, since being a determinate function of

µ, φ, µ1, and φ1 it contains but two arbitrary constants if we regard it as a
function of µ and φ, instead of containing 2m+ 1.

It is known as a Laplace’s Coefficient, or briefly as a Laplacian, of the mth
degree.

We shall soon express it in the regulation form of a Surface Spherical Har-
monic.

The radius vector of (x1, y1, z1) is called the axis of the Laplacian and the
point where the axis cuts the surface of the unit sphere is the pole of the Lapla-
cian.

We shall represent the Laplacian Pm(cos γ) by Lm(µ, φ, µ1, φ1). Of course
Lm(µ, φ, 1, φ1) = Pm(µ) = Pm(cos θ), and is really independent of φ.

3v. Art. 74.
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113. If the product of a Surface Spherical Harmonic of the mth degree by
a Laplacian of the same degree is integrated over the surface of the unit sphere,

the result is equal to
4π

2m+ 1
multiplied by the value of the Spherical Harmonic

at the pole of the Laplacian.
That is,

2πw

0

dφ

1w

−1

Ym(µ, φ)Lm(µ, φ, µ1, φ1)dµ =
4π

2m+ 1
Ym(µ1, φ1). (1)

Transform to the axis of the Laplacian as a new polar axis, and let Zm(µ, φ)
be the transformed Spherical Harmonic. Lm(µ, φ, µ1, φ1) will become Pm(µ),
and (1) will be proved if we can show that

2πw

0

dφ

1w

−1

Zm(µ, φ)Pm(µ)dµ =
4π

2m+ 1
Zm(1, 0). (2)

Zm(µ, φ)Pm(µ) = A0[Pm(µ)]2 +
n=m∑
n=1

(An cosnφ+Bn sinnφ)Pnm(µ)Pm(µ)

(v. (5) Art. 102).

2πw

0

Zm(µ, φ)Pm(µ)dφ = 2πA0[Pm(µ)]2 and

1w

−1

dµ

2πw

0

Zm(µ, φ)Pm(µ)dφ =
4π

2m+ 1
A0 (v. (5) Art. 89).

But Zm(1, 0) = A0, since Pm(1) = 1 and Pnm(1) contains (1−1)
n
2 as a factor

and is equal to zero.
Hence (2) is proved.

114. We can now express a Laplacian in the regulation form as a Spherical
Harmonic, by the formulas of Art. 107.

Lm(µ, φ, µ1, φ1) =Pm(cos γ) = Pm[cos θ cos θ1 + sin θ sin θ1 cos(φ− φ1)]

=
k=∞∑
k=0

[
A0,kPk(µ) +

n=k∑
n=1

(An,k cosnφ+Bn,k sinnφ)Pnk (µ)
]

where A0,m =
2m+ 1

4π

2πw

0

dφ

1w

−1

Lm(µ, φ, µ1, φ1)Pm(µ)dµ.

=
2m+ 1

4π
4π

2m+ 1
Pm(µ1) = Pm(µ1) by (1) Art. 113,
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An,m =
2m+ 1

2π
(m− n)!
(m+ n)!

2πw

0

dφ

1w

−1

Lm(µ, φ, µ1, φ1) cosnφPnm(µ)dµ

=
2(m− n)!
(m+ n)!

cosnφ1P
n
m(µ1) by (1) Art. 113, and

Bn,m =
2m+ 1

2π
(m− n)!
(m+ n)!

2πw

0

dφ

1w

−1

Lm(µ, φ, µ1, φ1) sinnφPnm(µ)dµ

=
2(m− n)!
(m+ n)!

sinnφ1P
n
m(µ1) by (1) Art. 113,

and A0,k = An,k = Bn,k = 0 by Art. 105 unless k = m. Hence

Lm(µ, φ, µ1, φ1) =

Pm(µ)Pm(µ1) + 2
n=m∑
n=1

[
(m− n)!
(m+ n)!

Pnm(µ)Pnm(µ1) cosn(φ− φ1)
]
. (1)

Each term of a Laplacian involves a numerical coefficient, a factor which is a
function of µ, a second factor which is the same function of µ1, and a third
factor which is of the form cos k(φ− φ1). We give below a table of the first few
Laplacians, taken from Minchin’s Statics, omitting in each term for the sake of
brevity the function of µ1.

By the aid of (1) we can write (5) Art. 107 more compactly. It becomes

f(µ, φ) =
1

4π

m=∞∑
m=0

(2m+ 1)
2πw

0

dφ1

1w

−1

f(µ1, φ1)Lm(µ, φ, µ1, φ1)dµ1 (2)

or F (θ, φ) =
1

4π

m=∞∑
m=0

(2m+ 1)
2πw

0

dφ1

πw

0

F (θ1, φ1)Pm(cos γ) sin θ1dθ1. (3)

LAPLACIANS.

coef. of cos 0(φ− φ1) coef. of cos(φ− φ1) coef. of cos 2(φ− φ1)

L0 1

L1 µ (1− µ2)
1
2

L2
1
4

(3µ2 − 1) 3µ(1− µ2)
1
2

3
4

(1− µ2)

L3
1
4

(5µ3 − 3µ)
3
8

(1− µ2)
1
2 (5µ2 − 1)

15
4
µ(1− µ2)

L4
1
64

(35µ4 − 30µ2 + 3)
5
8

(1− µ2)
1
2 (7µ3 − 3µ)

5
16

(1− µ2)(7µ2 − 1)
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coef. of cos 3(φ− φ1) coef. of cos 4(φ− φ1)

L0

L1

L2

L3
5
8

(1− µ2)
3
2

L4
35
8
µ(1− µ2)

3
2

35
64

(1− µ2)2

EXAMPLE.

Work the problems of Art. 108 and Art. 108 Exs. 1 and 2 by the aid of (3)
Art. 114.

115. Such problems as we have handled in Arts. 98 and 99, and also
problems differing from them in not having circular symmetry about an axis,
can now be solved by direct integration.

For instance let it be required to find the value at an external point of the
potential function due to the attraction of a solid sphere whose density at any
point is proportional to the product of any power of the radius vector by a
Surface Spherical Harmonic.

Let ρ = Crk1Ym(µ1, φ1).

Then using our ordinary notation we have

V =
aw

0

dr1

2πw

0

dφ1

1w

−1

Crk1Ym(µ1, φ1)r2
1dµ1√

r2 − 2rr1 cos γ + r2
1

.

But by (3) Art. 77

1√
r2 − 2rr1 cos γ + r2

1

=
1
r

[
P0(cos γ) +

r1

r
P1(cos γ)

+
r2
1

r2
P2(cos γ) + · · ·+ rm1

rm
Pm(cos γ) + · · ·

]
if r > r1.

Consequently since
2πw

0

dφ1

1w

−1

Ym(µ1, φ1)Yn(µ1, φ1)dµ1 = 0,
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V reduces to the single term

V =
C

rm+1

aw

0

rm+k+2
1 dr1

2πw

0

dφ1

1w

−1

Ym(µ1, φ1)Pm(cos γ)dµ1

=
C

rm+1

aw

0

rm+k+2
1

(
4π

2m+ 1
Ym(µ, φ)

)
dr1 by Art. 113.

∴ V =
4πC

2m+ 1
.
am+k+3

m+ k + 3
.
Ym(µ, φ)
rm+1

.

EXAMPLES.

1. Solve by direct integration the problems worked in Arts. 98 and 99 and
Examples 1, 2, 3, and 4 of Art. 99.

2. The density of a solid sphere is proportional to the product of the squares
of the distances from two mutually perpendicular diametral planes; find the
value of the potential function at an external point.

Ans. ρ = kr4
1 cos2 θ1 sin2 θ1 cos2 φ1

= kr4
1

[
1
15
P0(µ1) +

1
21
P2(µ1) +

1
42

cos 2φ1P
2
2 (µ1)

− 4
35
P4(µ1) +

1
105

cos 2φ1P
2
4 (µ1)

]
.

V =
M

a

[
a

r
+
a3

r3

(
1
9
P2(µ) +

1
18

cos 2φP 2
2 (µ)

)
−a

5

r5

(
4
33
P4(µ)− 1

99
cos 2φP 2

4 (µ)
)]

.

3. Solve Example 2 by an extension of the method of Arts. 98 and 99.

4. A conducting sphere of radius a connected with the ground by a wire
is placed in the field of force due to an electrified point at which m units of
electricity are concentrated. Find the value of the potential function due to the
induced charge.

Suggestion: Let V1 be the potential function due to the point, and V2 that
due to the induced charge, and let b be the distance of the point from the centre
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of the sphere. Then

V1 =
m√

b2 − 2br cos θ + r2

=
m

b

[
P0(cos θ) +

r

b
P1(cos θ) +

r2

b2
P2(cos θ) + · · ·

]
if r < b.

=
m

r

[
P0(cos θ) +

b

r
P1(cos θ) +

b2

r2
P2(cos θ) + · · ·

]
if r > b.

V2 = A0P0(cos θ) +A1
r

a
P1(cos θ) +A2

r2

a2
P2(cos θ) + · · · if r < a.

= A0
a

r
P0(cos θ) +A1

a2

r2
P1(cos θ) +A2

a3

r3
P2(cos θ) + · · · if r > a.

When r = a V1 + V2 = 0. Hence

A0 = −m
b
, A1 = −ma

b2
, A2 = −ma

2

b3
, · · ·

and

V2 = −m
b

[
P0(cos θ) +

r

b
P1(cos θ) +

r2

b2
P2(cos θ) + · · ·

]
if r < a

= −ma
br

[
P0(cos θ) +

a2

br
P1(cos θ) +

a4

b2r2
P2(cos θ) + · · ·

]
if r > a.

Hence the effect of the induced charge is precisely the same at an external
point as if the sphere were replaced by

ma

b
units of negative electricity concen-

trated at the point r =
a2

b
, θ = 0. v. Peirce, Newt. Pot. Func., § 66.

116. If the two points P and P ′ are taken on the line OH whose direction
cosines are λ, µ, and ν, and if u and u′ are the values at P and P ′ of any

continuous function of the space coördinates, then limit
PP ′

.
=0

[
u′ − u
PP ′

]
is called the

partial derivative of u along the line OH and will be represented by Dhu.
Let x, y, z be the coördinates of P and x+∆x, y+∆y, z+∆z the coördinates

of P ′; then
u′ − u = Dxu.∆x+Dyu.∆y +Dzu.∆z + ε

where ε is an infinitesimal of higher order than the first if ∆x, ∆y, and ∆z are
infinitesimal (v. Dif. Cal. Art. 198).

Hence
u′ − u
PP ′

= Dxu.
∆x
PP ′

+Dyu.
∆y
PP ′

+Dzu.
∆z
PP ′

+
ε

PP ′
.

But
∆x
PP ′

= λ,
∆y
PP ′

= µ, and
∆z
PP ′

= ν.

Therefore Dhu = λDxu+ µDyu+ νDzu. (1)
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If ∇2u = 0, Dp
xD

q
yD

r
zu is a solution of Laplace’s Equation.

For ∇2(Dp
xD

q
yD

r
zu) = Dp

xD
q
yD

r
z(∇2u) = 0.

Hence if ∇2u = 0 Dhu is a solution of Laplace’s Equation, and if OH1, OH2,
OH3, · · · are a set of lines through the origin Dh1Dh2Dh3 · · ·u is a solution of
Laplace’s Equation.

117. If Hk is a rational integral homogeneous Algebraic function of x, y,
and z of the kth degree

Dx

(
Hk

rl

)
= Dr

(
Hk

rl

)
Dxr +

1
rl
Dx(Hk)

= − lxHk

rl+2
+
Hk−1

rl
= − lxHk

rl+2
+
r2Hk−1

rl+2
,

and is of the form
Hk+1

rl+2
.

The same thing can be proved of Dy

(Hk

rl

)
and Dz

(Hk

rl

)
and therefore holds

good of Dh

(Hk

rl

)
.

If u is a homogeneous function of x, y, and z of the degree −m − 1 and
∇2u = 0 then ∇2(r2m+1u) = 0.

∇2(r2m+1u) = (2m+ 1)(2m+ 2)r2m−1u

+ 2(2m+ 1)r2m−1(xDxu+ yDyu+ zDzu) + r2m+1∇2u

= 0,
since xDxu+ yDyu+ zDzu = −(m+ 1)u

by Euler’s Theorem (v. Dif. Cal. Art. 220).

118.
M

r
=

M√
x2 + y2 + z2

is a solution of Laplace’s Equation (v. Art. 75)

and is of the form
H0

r
.

Dh1Dh2Dh3 · · ·Dhm

(M
r

)
is then a solution of Laplace’s Equation by Art.

116; it is of the form
Hm

r2m+1
by Art. 117 and is a homogeneous function of the

degree −m− 1.

Therefore r2m+1Dh1Dh2Dh3 · · ·Dhm

(M
r

)
is a solution of Laplace’s Equa-

tion, and is a rational integral homogeneous Algebraic function of x, y, and z
of the mth degree, and is consequently a Solid Spherical Harmonic of the mth

degree (v. Art. 110); and rm+1Dh1Dh2Dh3 · · ·Dhm

(M
r

)
is a Surface Spherical

Harmonic of the mth degree.
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Moreover since the direction of each of the lines OH1, OH2, · · · OHm de-
pends upon two angles which may be taken at pleasure, these angles and M
are 2m+ 1 arbitrary constants and may be so chosen that rm+1Dh1Dh2Dh3 · · ·

Dhm

(M
r

)
may be any given Surface Spherical Harmonic.

Consequently any given Surface Spherical Harmonic may be regarded as

formed by differentiating
M

r
successively along m determinate lines OH1, OH2

· · · OHm, and is given except for the undetermined factor M when these lines
are given.

The lines OH1, OH2, OH3, · · ·OHm are called the axes of the Harmonic,
and the points where they meet the surface of the unit sphere the poles of the
Harmonic. The m axes of a Zonal Harmonic coincide with the axis of coördinates
(v. Art. 86) and consequently the m axes of a Laplacian coincide with what we
have called the axis of the Laplacian (v. Art. 112).

119. Any Surface Zonal Harmonic Pm(µ) is equal to zero for m real and
distinct values of µ which lie between −1 and 1; and any Associated Function
Pnm(µ) is equal to zero for m−n real and distinct values of µ, which lie between
−1 and 1.

Pm(µ) =
1

2mm!
.
dm(µ2 − 1)m

dµm
. v. Art. 83 (1).

dk(µ2 − 1)m

dµk
contains (µ2 − 1)m−k as a factor. v. Art. 89.

From Rolle’s Theorem, “If f(x) is continuous and single-valued and is equal

to zero for the real values a and b of x,
df(x)
dx

is equal to zero for at least one

real value of x between a and b,” (v. Dif. Cal. Art. 126) it follows that since

(µ2 − 1)m = 0 when µ = −1 and when µ = 1
d(µ2 − 1)m

dµ
= 0 for at least one

value of µ between −1 and 1.
d(µ2 − 1)m

dµ
cannot be equal to zero for more than

one value of µ between −1 and 1, for it contains (µ2 − 1)m−1 as a factor and is
a rational Algebraic polynomial of the 2m− 1st degree.

In like manner we can show that
d2(µ2 − 1)m

dµ2
= 0 has m− 2 roots equal to

−1, m− 2 roots equal to 1 and two real roots between −1 and 1 which separate

the three distinct roots of
d(µ2 − 1)m

dµ
= 0; and in general if k < m + 1 that

dk(µ2 − 1)m

dµk
= 0 has m − k roots equal to −1, m − k roots equal to 1, and k

real roots separating the k + 1 distinct roots of
dk−1(µ2 − 1)m

dµk−1
= 0.

Hence Pm(µ) = 0 or
1

2mm!
.
dm(µ2 − 1)m

dµm
= 0 has m real and distinct roots

between −1 and 1, and it has no more since it is of the mth degree.
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The same reasoning shows that
dm+n(µ2 − 1)m

dµm+n
= 0 has m− n distinct real

roots between −1 and 1, and therefore that Pnm(µ) is equal to zero for m − n
distinct real values of µ between −1 and 1. Since Pnm(µ) contains sinn θ as a
factor it is also equal to zero when µ = −1 and when µ = 1.

cosnφ is equal to zero for 2n equidistant values of φ, and sinnφ is equal
to zero for 2n values of φ. Hence any Tesseral Harmonic sinnφPnm(µ) or
cosnφPnm(µ) is equal to zero for 2n equidistant values of φ, for µ = 1, for
µ = −1, and for m− n real and different values of µ between −1 and 1.

It follows that the value of any Surface Zonal Harmonic Pm(µ) at a point
on the surface of the unit sphere will have the same sign so long as the point
remains on one of the zones into which the surface of the sphere is divided by
the m circles of latitude corresponding to the m roots of Pm(µ) = 0, and will
change sign whenever the point passes from one of these zones into an adjoining
one; and that the value of any Tesseral Harmonic sinnφPnm(µ) at a point on the
surface of the unit sphere will have the same sign so long as the point remains
on any one of the tesserae into which the surface of the sphere is divided by
the m − n circles of latitude corresponding to the roots of Pnm(µ) = 0 and the
2n meridians corresponding to the roots of sinnφ = 0, and will change sign
whenever the point passes from one of these tesserae into an adjoining one.
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CHAPTER VII.1

CYLINDRICAL HARMONICS (BESSEL’S FUNCTIONS).

120. In Arts. 11 and 17 we obtained

z = AJ0(x) +BK0(x) (1)

as the general solution of Fourier’s Equation

d2z

dx2
+

1
x

dz

dx
+ z = 0, (2)

where J0(x) = 1− x2

22
+

x4

22.42
− x6

22.42.62
+ · · · (3)

and is called a Cylindrical Harmonic or Bessel’s Function of the zeroth order;
and where

K0(x) = J0(x) log x+
x2

22
− x4

22.42

(
1
1

+
1
2

)
+

x6

22.42.62

(
1
1

+
1
2

+
1
3

)
− · · · (4)

and is called a Cylindrical Harmonic or Bessel’s Function of the Second Kind,
and of the zeroth order.

In Art. 17 we found that z = Jn(x)
is a particular solution of Bessel’s Equation

d2z

dx2
+

1
x

dz

dx
+
(

1− n2

x2

)
z = 0, (5)

where if n is unrestricted in value

Jn(x) =
xn

2nΓ(n+ 1)

[
1− x2

22(n+ 1)
+

x4

24.2!(n+ 1)(n+ 2)

− x6

26.3!(n+ 1)(n+ 2)(n+ 3)
+ · · ·

]
(6)

and is called a Cylindrical Harmonic or Bessel’s Function of the nth order; and
that unless n is an integer

z = AJn(x) +BJ−n(x)

is the general solution of Bessel’s Equation.
If n is an integer it can be shown that

Jn(x) = (−1)nJ−n(x),

1The student should re-read carefully Arts. 11, 17, and 18(d) before beginning this chapter.
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(v. Forsyth’s Diff. Eq. Art. 102), and then

z = AJn(x) +B{Kn(x)}

is the general solution of Bessel’s Equation and

{Kn(x)} = Jn(x) log x− 1
2

(x
2

)−n k=n−1∑
k=0

(n− k − 1)!
k!

(x
2

)2k

− 1
2

(x
2

)n k=∞∑
k=0

(−1)k

(n+ k)!k!

[
1 +

1
2

+
1
3

+ · · ·+ 1
k

+1 +
1
2

+
1
3

+ · · ·+ 1
n+ k

](x
2

)2k

(7)

v. M. Bôcher, Ann. Math. Vol. VI, No. 4.

121. A useful expression for Jn(x) as a definite integral can be obtained
without difficulty from Bessel’s Equation [(5) Art. 120] by a slight modification
of the method given by Forsyth (Diff. Eq. Art. 136).

It was shown in Art. 17 that z = xnv is a solution of Bessel’s Equation if v
satisfies the equation

d2v

dx2
+

2n+ 1
x

dv

dx
+ v = 0. (1)

Assume v =
bw

a

T cos(xt)dt (2)

where x and t are independent, T is an unknown function of t, and a and b are
at present undetermined.

Then
dv

dx
= −

bw

a

tT sin(xt)dt

and
d2v

dx2
= −

bw

a

t2T cos(xt)dt.

Substituting in (1) after multiplying through by x, we have
bw

a

(1− t2)Tx cos(xt)dt−
bw

a

(2n+ 1)tT sin(xt)dt = 0. (3)

By integration by parts we find that

bw

a

(1− t2)Tx cos(xt)dt =
[
(1− t2)T sin(xt)

b]
a

−
bw

a

[
(1− t2)

dT

dt
− 2tT

]
sin(xt)dt,
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and (3) reduces to

[
(1− t2)T sin(xt)

b]
a

−
bw

a

[
(1− t2)

dT

dt
+ (2n− 1)tT

]
sin(xt)dt = 0. (4)

If we determine T so that

(1− t2)
dT

dt
+ (2n− 1)tT = 0, (5)

and a and b so that
[
(1− t2)T sin(xt)

b]
a

= 0 (6)

(4) will be satisfied and our problem will be solved. (5) gives

T = C(1− t2)n−
1
2 , (7)

and (6) will obviously be satisfied if a = −1 and b = 1.

Hence v = C

1w

−1

(1− t2)n cos(xt)dt√
1− t2

is a solution of (1),

and z = Cxn
1w

−1

(1− t2)n cos(xt)dt√
1− t2

(8)

is a solution of Bessel’s Equation.
If we let t = cosφ in (8) we get

z = Cxn
πw

0

sin2n φ cos(x cosφ)dφ.

Expand cos(x cosφ) into a series involving powers of x cosφ, integrate term
by term by the aid of the formulas

π
2w

0

sinn x.dx =
√
π

2
.
Γ
(n+ 1

2

)
Γ
(n

2
+ 1
) [Int. Cal. (1) Art. 99],

π
2w

0

sinn x cosm x.dx =
Γ
(m+ 1

2

)
Γ
(n+ 1

2

)
2Γ
(m+ n

2
+ 1
)

(Int. Cal. Art. 99 Ex. 2), and compare with (6) Art. 120, and we get

Jn(x) =
xn

2n
√
π Γ
(
n+

1
2

) πw

0

sin2n φ cos(x cosφ)dφ. (9)
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If n is a positive integer (9) reduces to

Jn(x) =
1
π
.

xn

1.3.5. · · · (2n− 1)

πw

0

sin2n φ cos(x cosφ)dφ. (10)

Let n = 0 in (9) or (10) and we get

J0(x) =
1
π

πw

0

cos(x cosφ)dφ. (11)

EXAMPLES.

1. Obtain Formula (11) directly from Fourier’s Equation, (2) Art. 120.

2. Prove by integration by parts that if n > −1
2

πw

0

sin2n φ cosφ sin(x cosφ)dφ =
x

2n+ 1

πw

0

sin2n+2 φ cos(x cosφ)dφ.

3. Prove by integration by parts that if n >
1
2

πw

0

sin2n φ cosφ sin(x cosφ)dφ

=
1
x

πw

0

[2n sin2n φ− (2n− 1) sin2n−2 φ] cos(x cosφ)dφ.

122. We can now readily obtain a number of useful formulas.
Differentiate (11) Art. 121 with respect to x and we get

dJ0(x)
dx

= − 1
π

πw

0

cosφ sin(x cosφ)dφ

= −x
π

πw

0

sin2 φ cos(x cosφ)dφ by Ex. 2 Art. 121.

Hence by (10) Art. 121
dJ0(x)
dx

= −J1(x). (1)

In like manner by the aid of Exs. 3 and 2, Art. 121, we can obtain the
relations

d[xnJn(x)]
dx

= xnJn−1(x) (2)
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if n >
1
2

,

d[x−nJn(x)]
dx

= −x−nJn+1(x) (3)

if n > −1
2

.

(2) can be written
xw

0

xnJn−1(x)dx = xnJn(x) (4)

if n >
1
2

.

(2) and (3) can be written

xn
dJn(x)
dx

+ nxn−1Jn(x) = xnJn−1(x)

and x−n
dJn(x)
dx

− nx−n−1Jn(x) = −x−nJn+1(x),

or
dJn(x)
dx

= Jn−1(x)− n

x
Jn(x) (5)

and
dJn(x)
dx

= − Jn+1(x) +
n

x
Jn(x); (6)

whence 2
dJn(x)
dx

= Jn−1(x)− Jn+1(x) (7)

and
2n
x
Jn(x) = Jn−1(x) + Jn+1(x). (8)

The repeated use of formula (8) will enable us to get from J0(x) and J1(x)
any of Bessel’s Functions whose order is a positive integer. For example, we
have

J2(x) =
2
x
J1(x)− J0(x)

J3(x) =
( 8
x2
− 1
)
J1(x)− 4

x
J0(x).

From a table giving the values of J0(x) and J1(x), then, tables for the func-
tions of higher order are readily constructed. Such a table taken from Rayleigh’s
Sound (Vol. I., page 265) will be found in the Appendix (Table VI.).

By the aid of (5) and (6) any derivative of Jn(x) can be expressed in terms
of Jn(x) and Jn+1(x). For example

d2Jn(x)
dx2

=
[
n(n− 1)

x2
− 1
]
Jn(x) +

1
x
Jn+1(x).
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If we write J0(x) for z in Fourier’s Equation [(2) Art. 120], then multiply
through by xdx and integrate from zero to x, simplifying the resulting equation
by integration by parts, we get

x
dJ0(x)
dx

+
xw

0

xJ0(x)dx = 0;

whence by (1)
xw

0

xJ0(x)dx = xJ1(x). (9)

If we write J0(x) for z in Fourier’s Equation, then multiply through by

x2 dJ0(x)
dx

dx and integrate from zero to x, simplifying by integration by parts
we get

x2

2

[(
dJ0(x)
dx

)2

+ (J0(x))2

]
−

xw

0

x(J0(x))2dx = 0;

whence by (1)
xw

0

x(J0(x))2dx =
x2

2
[(J0(x))2 + (J1(x))2]. (10)

In like manner we can get from Bessel’s Equation [(5) Art. 120] the formula

xw

0

x(Jn(x))2dx =
1
2

[
x2

(
dJn(x)
dx

)2

+ (x2 − n2)(Jn(x))2

]
(11)

which (6) enables us to reduce to the form

xw

0

x(Jn(x))2dx =
x2

2
[(Jn(x))2 + (Jn+1(x))2]− nxJn(x)Jn+1(x). (12)

Formulas (9), (10), (11), and (12) will prove useful when we attempt to
develop in terms of Cylindrical Harmonics.

Values of Jn(x) for larger values of x than those given in Table VI., Appendix,
may be computed very easily from the formula

Jn(x) =

√
2
πx

[
1− (12 − 4n2)(32 − 4n2)

2!(8x)2

+
(12 − 4n2)(32 − 4n2)(52 − 4n2)(72 − 4n2)

4!(8x)4
− · · ·

]
cos
(
x− π

4
− nπ

2

)
+

√
2
πx

[
12 − 4n2

1!8x

− (12 − 4n2)(32 − 4n2)(52 − 4n2)
3!(8x)3

+ · · ·
]

sin
(
x− π

4
− nπ

2

)
. (13)
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v. Lommel, Studien über die Bessel’schen Functionen, page 59.

The series terminates if 2n is an odd integer, but otherwise it is divergent. It
can be proved, however, that in any case the sum of m terms differs from Jn(x)
by less than the last term included, and consequently the formula can safely be
used for numerical computation.

EXAMPLES.

1. Confirm (1), (2), and (3), Art. 122, by obtaining them from (3) and (6),
Art. 120.

2. Confirm (1), Art. 122, by showing that Fourier’s Equation will differen-
tiate into the special form assumed by Bessel’s Equation when n = 1.

3. Show that (9), Art. 122, is a special case of (4), Art. 122.

4. Show that the limit approached by Jn(x) as n increases indefinitely is
zero, and by the aid of this fact and of (8), Art. 122, prove that

Jn−1(x) =
2
x

[nJn(x)− (n+ 2)Jn+2(x) + (n+ 4)Jn+4(x) + · · · ].

5. Prove that

dJn(x)
dx

=
2
x

[ 1
2nJn(x)− (n+ 2)Jn+2(x) + (n+ 4)Jn+4(x)− · · · ].

6. Show that the substitution of
(

1− y2

n2

) 1
2

for x in Legendre’s Equation

will reduce it to the form(
1− y2

n2

)
d2z

dy2
+
(

1
y
− 2y
n2

)
dz

dy
+
(

1 +
1
n

)
z = 0,

and that the limiting form approached by this equation as n is indefinitely
increased is Fourier’s Equation, and hence that J0(x) can be regarded as some

constant factor multiplied by the limiting value approached by Pn

(
1 − x2

n2

) 1
2

as n is indefinitely increased.

123. To complete the solution of the drumhead problem taken up in Art.
11, we found that it would be necessary to develop a given function of r in the
form

f(r) = A1J0(µ1r) +A2J0(µ2r) +A3J0(µ3r) + · · ·

where µ1, µ2, µ3, &c., are the roots of the transcendental equation J0(µa) = 0;
and in Art. 11, Ex. the development of unity in a series of precisely the same
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form was needed.

(a) Let us consider another problem.
The convex surface and one base of a cylinder of radius a and length b are

kept at the constant temperature zero, the temperature at each point of the
other base is a given function of the distance of the point from the centre of the
base; required the temperature of any point of the cylinder after the permanent
temperatures have been established.

Here we have to solve Laplace’s Equation in Cylindrical Coördinates ([XIV]
Art. 1).

D2
ru+

1
r
Dru+

1
r2
D2
φu+D2

zu = 0 (1)

subject to the conditions

u = 0 when z = 0
u = 0 “ r = a

u = f(r) “ z = b,

and from the symmetry of the problem we know that D2
φu = 0.

Assuming as usual u = R.Z we break (1) up into the equations

d2Z

dz2
− µ2Z = 0

d2R

dr2
+

1
r

dR

dr
+ µ2R = 0,

whence u = sinh(µz)J0(µr) (2)

and u = cosh(µz)J0(µr) (3)

are particular solutions of (1).

If µk is a root of J0(µa) = 0 (4)

u = sinh(µkz)J0(µkr)

satisfies (1) and two of the three equations of condition.

If then f(r) = A1J0(µ1r) +A2J0(µ2r) +A3J0(µ3r) + · · · (5)

µ1, µ2, µ3, &c., being roots of (4),

u = A1
sinh(µ1z)
sinh(µ1b)

J0(µ1r)+A2
sinh(µ2z)
sinh(µ2b)

J0(µ2r)+A3
sinh(µ3z)
sinh(µ3b)

J0(µ3r)+· · · (6)

satisfies (1) and all of the equations of condition, and is the required solution.
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(b) If instead of keeping the convex surface of the cylinder at the tem-
perature zero we surround it by a jacket impervious to heat, the equation of
condition u = 0 when r = a will be replaced by Dru = 0 when r = a, or if

u = sinh(µz)J0(µr),

by
dJ0(µr)
dr

= 0 when r = a,

that is by µJ ′0(µa) = 02 or (v. (1) Art. 122)

by J1(µa) = 0. (7)

If now in (5) and (6) µ1, µ2, µ3, &c., are roots of (7), (6) will be the solution
of our new problem.

(c) If instead of keeping the convex surface of the cylinder at the tempera-
ture zero we allow it to cool in air at the temperature zero, the condition u = 0
when r = a will be replaced by Dru+ hu = 0 when r = a, or if

u = sinh(µz)J0(µr)

by µJ ′0(µr) + hJ0(µr) = 0 when r = a

that is by µaJ ′0(µa) + ahJ0(µa) = 0 or (v. (1) Art. 122)

by µaJ1(µa)− ahJ0(µa) = 0. (8)

If now in (5) and (6) µ1, µ2, µ3, &c., are roots of (8), (6) will be the solution
of our present problem.

124. It can be shown that J0(x) = 0 (1)
J1(x) = 0 (2)

and xJ ′0(x) + λJ0(x) = 0 (3)

have each an infinite number of real positive roots (v. Riemann, Par. Dif. Gl.,
§ 97). The earlier roots of these equations can be computed without serious
difficulty from the table for the values of J0(x) (Table VI., Appendix).

The first twelve roots of J0(x) = 0 and J1(x) = 0 are given in Table IV.,
Appendix, a table due to Stokes. Large roots of J0(x) = 0 and of J1(x) = 0
may be very easily computed from the formulas

x
(s)
0

π
= s− .25 +

.050661
4s− 1

− .053041
(4s− 1)3

+
.262051

(4s− 1)5
− · · · (4)

x
(s)
1

π
= s+ .25− .151982

4s+ 1
+

.015399
(4s+ 1)3

− .245270
(4s+ 1)5

+ · · · (5)

2We shall find it convenient to use the familiar notation of f ′(x) =
df(x)

dx
(v. Dif. Cal., p.

119).
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given by Stokes in Camb. Phil. Trans., Vol. IX., x(s)
0 representing the sth root

of J0(x) = 0, and x
(s)
1 the sth root of J1(x) = 0.

125. We have seen in Art. 123 that U = sinh(µkz)J0(µkr) and V =
sinh(µlz)J0(µlr) are solutions of ∇2U = 0 and ∇2V = 0 if we express Laplace’s
Equation in terms of Cylindrical Coördinates (v. (1) Art. 123).

Hence, if
r
dS represents the surface integral over any closed surface, we

have w
(UDnV − V DnU)dS = 0

by Green’s Theorem (v. Art. 92).
If we take the cylinder of Art. 123 as our surface, and perform the integra-

tions and simplify the resulting equation, we find

aw

0

rJ0(µkr)J0(µlr)dr =
−1

µk2 − µl2
[µkaJ0(µla)J ′0(µka)− µlaJ0(µka)J ′0(µla)]

=
−1

µl2 − µk2
[µkaJ0(µla)J1(µka)− µlaJ0(µka)J1(µla)]. (1)

Hence if µk and µl are different roots of

J0(µa) = 0,
or of J1(µa) = 0,
or of µaJ1(µa)− λJ0(µa) = 0,

then
aw

0

rJ0(µkr)J0(µlr)dr = 0. (2)

EXAMPLE.

Obtain (1) Art. 125 directly from Fourier’s Equation

d2J0(µr)
dr2

+
1
r

dJ0(µr)
dr

+ µ2J0(µr) = 0.

126. We are now able to obtain the developments called for in Art. 123.

Let f(r) = A1J0(µ1r) +A2J0(µ2r) +A3J0(µ3r) + · · · (1)

µ1, µ2, µ3, &c., being roots of J0(µa) = 0, or of J1(µa) = 0, or of

µaJ1(µa)− λJ0(µa) = 0.

To determine any coefficient Ak multiply (1) by rJ0(µkr)dr and integrate
from zero to a. The first member will become

aw

0

rf(r)J0(µkr)dr.
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Every term of the second member will vanish by (2) Art. 125 except the
term

Ak

aw

0

r(J0(µkr))2dr.

aw

0

r(J0(µkr))2dr =
1
µ2
k

µkaw

0

x(J0(x))2dx =
a2

2
[(J0(µka))2 + (J1(µka))2]

by (10) Art. 122.

Hence Ak =
2

a2[(J0(µka))2 + (J1(µka))2]

aw

0

rf(r)J0(µkr)dr. (2)

The development (1) holds good from r = 0 to r = a (v. Arts. 24, 25, and 88).
If µ1, µ2, µ3, &c., are roots of J0(µa) = 0, (2) reduces to

Ak =
2

a2(J1(µka))2

aw

0

rf(r)J0(µkr)dr. (3)

If µ1, µ2, µ3, &c., are roots of J1(µa) = 0, (2) reduces to

Ak =
2

a2(J0(µka))2

aw

0

rf(r)J0(µkr)dr. (4)

If µ1, µ2, µ3, &c., are roots of µaJ1(µa)− λJ0(µa) = 0, (2) reduces to

Ak =
2µ2

k

(λ2 + µ2
ka

2)(J0(µka))2

aw

0

rf(r)J0(µkr)dr. (5)

For the important case where f(r) = 1

aw

0

rf(r)J0(µkr)dr =
aw

0

rJ0(µkr)dr =
1
µ2
k

µkaw

0

xJ0(x)dx =
a

µk
J1(µka) (6)

by (9) Art. 122, and (3) reduces to

Ak =
2

µkaJ1(µka)
, (7)

(4) reduces to Ak = 0 except for k = 1 when µk = 0 and we have A1 = 1,

(5) reduces to Ak =
2λ

(λ2 + µ2
ka

2)J0(µka)
. (8)
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EXAMPLES.

1. Show that in (12) Art. 11 any coefficient Ak has the value given in (3)
Art. 126; and in the answer to Art. 11, Ex. the value given in (7) Art. 126.

2. Show that if a drumhead be initially distorted so that it has circular
symmetry, it will not in general give a musical note; that it may be initially
distorted so as to give a musical note; that in this case the vibration will be a
steady vibration; that the frequencies of the various musical notes that can be
given when the distortion has circular symmetry are proportional to the roots
of J0(x) = 0; that the possible nodes for such vibrations are concentric circles
whose radii are proportional to the roots of J0(x) = 0.

3. A cylinder of radius one meter and altitude one meter has its upper
surface kept at the temperature 100◦, and its base and convex surface at the
temperature 15◦, until the stationary temperature is set up. Find the tempera-
ture at points on the axis 25 cm., 50 cm., and 75 cm. from the base, and also
at a point 25 cm. from the base and 50 cm. from the axis.

Ans., 29◦.6; 47◦.6; 71◦.2; 25◦.8.

4. An iron cylinder one meter long and twenty centimeters in diameter has
its convex surface covered with a so-called non-conducting cement one centime-
ter thick. One end and the convex surface of the cylinder thus coated are kept
at the temperature zero, the other end at the temperature of 100◦. Find to
the nearest tenth of a degree the temperature of the middle point of the axis,
and of the points of the axis twenty centimeters from each end after the tem-
peratures have ceased to change. Given that the conductivity of iron is 0.185
and of cement 0.000162 in C. G. S. units. Find also the temperature of a point
on the surface midway between the ends, and of points on the surface twenty
centimeters from each end. Find the temperatures of the three points of the
axis, supposing the coating a perfect non-conductor, and again, supposing the
coating absent. Neglect the curvature of the coating.

Ans., 15◦.4; 40◦.85; 72◦.8; 15◦.3; 40◦.7; 72◦.5; 0◦.0; 0◦.0; 1◦.3.

127. If instead of considering the cooling of a cylinder as in Art. 123 we
have to deal with a cylindrical shell whose curved surfaces are co-axial cylinders,
we are obliged to use the Bessel’s Functions of the second kind. Let our equations
of condition be

u = 0 when z = 0, u = 0 when r = a,

u = f(r) “ z = b, u = 0 “ r = c.

Then (v. Art. 123)

u = sinh(µkz)
[
J0(µkr)−

J0(µkc)
K0(µkc)

K0(µkr)
]
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where µk is a root of the equation

J0(µa)− J0(µc)
K0(µc)

K0(µa) = 0 (1)

will satisfy Laplace’s Equation [(1) Art. 123] and all of the equations of condition
except the second.

Hence u =
k=∞∑
k=1

Ak
sinh(µkz)
sinh(µkb)

[
J0(µkr)−

J0(µkc)
K0(µkc)

K0(µkr)
]

(2)

is the required solution if

f(r) =
k=∞∑
k=1

Ak

[
J0(µkr)−

J0(µkc)
K0(µkc)

K0(µkr)
]
. (3)

The development (3) is easily obtained.
Call the parenthesis for the sake of brevity B0(µkr). Then by the method

of Art. 125 we get if we integrate over our cylindrical shell
cw

a

rB0(µkr)B0(µlr)dr = 0 (4)

if µk and µl are roots of (1); and by an easy extension of (10) Art. 122
cw

a

r[B0(µkr]2dr = 1
2{c

2[B′0(µkc)]2 − a2[B′0(µka)]2}. (5)

Determining the coefficients in (3) as in Art. 124 and simplifying by the aid
of (4) we have

Ak =

2
cw

a

rf(r)
[
J0(µkr)−

J0(µkc)
K0(µkc)

K0(µkr)
]
dr

c2
[
J ′0(µkc)−

J0(µkc)
K0(µkc)

K ′0(µkc)
]2
− a2

[
J0
′(µka)− J0(µkc)

K0(µkc)
K ′0(µka)

]2 .
(6)

EXAMPLE.

If a membrane bounded by concentric circles of radius a and radius b, and
fastened at the edges, is initially distorted into a form symmetrical with respect
to the centre, and then allowed to vibrate

y =
k=∞∑
k=1

Ak cos(µkct)
[
J0(µkr)−

J0(µkb)
K0(µkb)

K0(µkr)
]

where Ak is obtained from (6) Art. 127 by replacing c by b.
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128. If in the cooling of a cylinder u = 0 when z = 0, u = 0 when z = b,
and u = f(z) when r = a, the problem is easily solved.

If in (2) and (3) Art. 123 µ is replaced by µi we can readily obtain

z = sin(µz)J0(µri)
and z = cos(µz)J0(µri)

as particular solutions of Laplace’s Equation [(1) Art. 123]; and

J0(xi) = 1 +
x2

22
+

x4

22.42
+

x6

22.42.62
+ · · · (1)

and is real.

f(z) =
k=∞∑
k=1

Ak sin
kπz

b

where Ak =
2
b

bw

a

f(z) sin
kπz

b
dz (2)

by Art. 31 (7) and (8).

Hence u =
k=∞∑
k=1

Ak sin
kπz

b

J0

(kπri
b

)
J0

(kπai
b

) (3)

is our required solution.

EXAMPLES.

1. If the cylinder is hollow and we have u = 0 when z = 0, u = 0 when
z = b, u = 0 when r = c, and u = f(z) when r = a; then

u =
k=∞∑
k=1

Ak sin
kπz

b

J0

(kπri
b

)
J0

(kπci
b

) − K0

(kπri
b

)
K0

(kπci
b

)


÷

J0

(kπai
b

)
J0

(kπci
b

) − K0

(kπai
b

)
K0

(kπci
b

)

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where Ak has the value given in (2) Art. 128, and

K0(xi) = K0(xi)− J0(xi) log i

= J0(xi) log x− x2

22
− x4

22.42
( 1

1 + 1
2 )− x6

22.42.62
( 1

1 + 1
2 + 1

3 )− · · ·

[v. (4) Art. 120], and is real.

2. A hollow cylinder 6 feet long whose inner surface has the radius 3 inches,
and whose outer surface has the radius 1 foot, has its bases and outer surface
kept at the temperature 0◦, and its inner surface at the temperature 100◦, until
the permanent state of temperatures is established; find the temperatures of
two points in a plane parallel to the bases and half-way between them, one of
which is 6 inches and the other 9 inches from the axis. Ans., 49◦.6; 20◦.2.

129. If in the problem of Art. 123 the temperatures of the points of the
upper base of the cylinder are unsymmetrical so that u = f(r, θ) when z = b,
we have to get particular solutions of Laplace’s Equation [(1) Art. 123] for the
case where D2

φu is not equal to zero. We readily find that

u = sinh (µz)[A cosnφ+B sinnφ]Jn(µr)

and u = cosh (µz)[A cosnφ+B sinnφ]Jn(µr)

are such solutions, and that

u =
n=∞∑
n=0

k=∞∑
k=1

sinhµkz
sinhµkb

[An,k cosnφ+Bn,k sinnφ]Jn(µkr) (1)

is the solution of the given problem if

f(r, φ) =
n=∞∑
n=0

k=∞∑
k=1

(An,k cosnφ+Bn,k sinnφ)Jn(µkr) (2)

where µk is a root of the equation

Jn(µa)
µnan

= 0. (3)

EXAMPLES.

1. Show that
aw

0

rJn(µkr)Jn(µlr)dr

=
a

µk2 − µl2
[µlJn(µka)J ′n(µla)− µkJn(µla)J ′n(µka)]

=
a

µk2 − µl2
[µkJn(µla)Jn+1(µka)− µlJn(µka)Jn+1(µla)].
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2. Show that
aw

0

r[Jn(µkr)]2dr

=
1
2

[
a2(J ′n(µka))2 +

(
a2 − n2

µk2

)
(Jn(µka))2

]
=
a2

2
[(Jn(µka))2 + (Jn+1(µka))2]− na

µk
Jn(µka)Jn+1(µka).

3. Show that in Art. 129

A0,k =
1
π

2πw

0

dφ

aw

0

rf(r, φ)J0(µkr)dr

a2[J1(µka)]2
,

B0,k = 0,

An,k =
2
π

2πw

0

dφ

aw

0

rf(r, φ) cosnφJn(µkr)dr

a2[Jn+1(µka)]2
,

Bn,k =
2
π

2πw

0

dφ

aw

0

rf(r, φ) sinnφJn(µkr)dr

a2[Jn+1(µka)]2
.

4. Obtain the coefficients for the case where the convex surface of the cylin-
der is impervious to heat.

5. Obtain the coefficients for the case where the convex surface of the cylin-
der is exposed to air at the temperature zero.

6. Show that if in a drumhead problem of Art. 11 the initial distortion is
unsymmetrical, so that we have to solve the equation [XI] Art. 1 subject to the
conditions z = f(r, φ) when t = 0, Dtz = 0 when t = 0, z = 0 when r = a, the
solution is

z =
n=∞∑
n=0

k=∞∑
k=1

cos(µkct)(An,k cosnφ+Bn,k sinnφ)Jn(µkr)

where A0,k, B0,k, An,k, and Bn,k have the values given in Ex. 3.

7. What modifications do the statements made in Ex. 2, Art. 126, need to
make them apply to the unsymmetrical case treated in Ex. 6?

Show that any possible nodal system in Ex. 6 is composed of concentric cir-
cles and of radii whose outer extremities are equidistant. v. Rayleigh’s Sound,
Vol. I., Arts. (202-207).
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8. Solve the problem of Art. 127 and of Art. 127. Ex. for the unsymmetrical
case. Suggestion: AJn(x) +BKn(x) is a solution of Bessel’s Equation.

9. Solve the problem of Art. 128 and of Art. 128. Ex. 1. for the case where
u = f(z, φ) when r = a. Suggestion: u = sinµz(A cosnφ + B sinnφ)Jn(µri)
is a solution of Laplace’s Equation, and f(z, φ) can be developed into a double
Fourier’s Series [v. (15) Art. 71].

10. Show that in dealing with a wedge cut from a cylinder by planes passed
through the axis, or with a membrane in the form of a circular sector, it may
be necessary to use Bessel’s Functions of fractional or incommensurable orders.

11. Bernouilli’s Problem (v. Chapter IX). In considering small transverse
vibrations of a uniform, heavy, flexible, inelastic string fastened at one end
and initially distorted into some given curve, we have to solve the equation
D2
t y = c2(xD2

xy+Dxy), subject to the conditions Dty = 0 when t = 0, y = f(x)
when t = 0, y = 0 when x = a; the origin being taken at the distance a below
the point of suspension and the axis of X taken vertical.

Show that y =
k=∞∑
k=1

Ak cosµkctB0(µ2
kx),

where B0(x) = 1− x

12
+

x2

12.22
− x3

12.22.32
+ · · ·

= J0(2
√
x)

and µk is a root of the equation

B0(µ2a) = J0(2µ
√
a) = 0,

and Ak =

aw

0

f(x)B0(µ2
kx)dx

µ2a2[B′0(µ2
ka)]2

=

aw

0

f(x)J0(2µk
√
x)dx

a[J1(2µk
√
a)]2

.

.

12. As a simple case under Example 10 consider the vibrations of a circular
membrane fastened at the perimeter and also along a radius and then initially
distorted (v. Rayleigh’s Sound, Art. 207). In this case we must modify the
formula given in Ex. 6 by dropping out the terms involving cosnφ and by taking
n =

m

2
. The required solution is

z =
m=∞∑
m=1

k=∞∑
k=1

Bm,k cosµkct sin
mφ

2
Jm

2
(µkr)
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where µk is a root of
Jm

2
(µa)

µ
m
2 a

m
2

= 0

and Bm,k =
2
π

2πw

0

dφ

aw

0

rf(r, φ) sin
mφ

2
Jm

2
(µkr)dr

a2[Jm
2

′(µka)]2
.

For the terms in which m is odd, Jm
2

(x) can be readily obtained from (13)
Art. 122, which will become a finite sum.

For example, (13) Art. 122 gives the values

J 1
2
(x) =

√
2
πx

sinx; J 3
2
(x) =

√
2
πx

(
1
x

sinx− cosx
)

;

J 5
2
(x) = −

√
2
πx

[(
1 +

3
x2

)
sinx+

3
x

cosx
]
; &c.

13. The question of the flow of heat in three dimensions involves a problem
not unlike the last.

Suppose the initial temperatures of all points in a sphere of radius c given,
and let the surface be kept at the temperature zero. Then we have to solve the
equation

Dtu =
a2

r2

[
Dr(r2Dru) +

1
sin θ

Dθ(sin θDθu) +
1

sin2 θ
D2
φu

]
(1)

([IV] Art. 1) subject to the conditions

u = 0 when r = c,

u = f(r, θ, φ) when t = 0.

If we assume u = T.R.V where T is a function of t only, R of r only, and V of
θ and φ only, (1) can be broken up into

dT

dt
+ a2α2T = 0 (2)

m(m+ 1)V +
1

sin θ
Dθ(sin θDθV ) +

1
sin2 θ

D2
φV = 0 (3)

and
d2R

dr2
+

2
r

dR

dr
+
[
α2 − m(m+ 1)

r2

]
R = 0. (4)

Hence T = e−a
2α2t, V = Ym(µ, φ) [v. Art. 102 (2)], and R is still to be found.

If in (4) we let x = αr and z = R
√
αr it becomes

d2z

dx2
+

1
x

dz

dx
+
[
1−

(m+ 1
2 )2

x2

]
z = 0



CYLINDRICAL HARMONICS. 238

which is satisfied by z = Jm+ 1
2
(x). (v. Art. 17.)

Therefore R =
1√
αr
Jm+ 1

2
(αr).

f(r, θ, φ) =
1

4π

m=∞∑
m=0

(2m+ 1)
2πw

0

dφ1

πw

0

f(r, θ1, φ1)Pm(cos γ) sin θ1dθ1

by (3) Art. 114,

=
m=∞∑
m=0

n=m∑
n=0

[Am,nfm,n(r) cosnφ+Bm,nFm,n(r) sinnφ]Pnm(µ).

√
rfm,n(r) =

k=∞∑
k=0

Cm,n,kJm+ 1
2
(αkr)

where αk is a root of the equation

Jm+ 1
2
(αc)

(αc)m+ 1
2

= 0

and Cm,n,k =

2
cw

0

r
3
2 fm,n(r)Jm+ 1

2
(αkr)dr

c2[J ′
m+ 1

2
(αkc)]2

.

√
rFm,n(r) =

m=∞∑
m=0

Dm,n,kJm+ 1
2
(αkr)

where Dm,n,k =

2
cw

0

r
3
2Fm,n(r)Jm+ 1

2
(αkr)dr

c2[J ′
m+ 1

2
(αkc)]2

.

The final solution is

u =
1√
r

m=∞∑
m=0

n=m∑
n=0

[
Pnm(µ)

k=∞∑
k=1

(Am,nCm,n,k cosnφ

+Bm,nDm,n,k sinnφ)e−a
2α2
ktJm+ 1

2
(αkr)

]
cf. Riemann, Par. Dif. Gl., §§ 72 and 73.
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CHAPTER VIII.

LAPLACE’S EQUATION IN CURVILINEAR COÖRDINATES.
ELLIPSOIDAL HARMONICS.

130. Orthogonal Curvilinear Coördinates.

If F1(x, y, z) = ρ1

F2(x, y, z) = ρ2

F3(x, y, z) = ρ3

 (1)

are the equations in rectangular coördinates of three surfaces that are mutually
perpendicular no matter what the values of ρ1, ρ2, and ρ3, the parameters ρ1,
ρ2, and ρ3, may be regarded as a set of coördinates for a point of intersection
of the three surfaces, in the sense that when ρ1, ρ2, ρ3 are given the point in
question is determined, and when the point is given the corresponding values of
ρ1, ρ2, ρ3, can be found.

From equations (1) x, y, and z can be expressed in terms of ρ1, ρ2, and ρ3.
Suppose this done. If now x, y, z are the rectangular coördinates of the point
ρ1 = a, ρ2 = b, ρ3 = c, the rectangular coördinates of the points ρ1 = a + dρ1,
ρ2 = b, ρ3 = c, are obviously x+Dρ1x.dρ1+ε1, y+Dρ1y.dρ1+ε2, z+Dρ1z.dρ1+ε3,
where ε1, ε2, and ε3 are infinitesimals of higher order than dρ1. Hence the square
of the distance between the points will differ by an infinitesimal of higher order
than that of dρ2

1 from dn2
1 where

dn2
1 = [(Dρ1x)2 + (Dρ1y)2 + (Dρ1z)

2]dρ2
1.

Let
1
h2

1

= (Dρ1x)2 + (Dρ1y)2 + (Dρ1z)
2

1
h2

2

= (Dρ2x)2 + (Dρ2y)2 + (Dρ2z)
2

1
h2

3

= (Dρ3x)2 + (Dρ3y)2 + (Dρ3z)
2.


(2)

Then if dn1 is the element of length normal to the surface ρ1 = a, dn2 normal
to ρ2 = b, and dn3 normal to ρ3 = c

dn1 =
dρ1

h1
, dn2 =

dρ2

h2
, dn3 =

dρ3

h3
. (3)

The element of surface dS1 on the surface ρ1 = a is easily seen to be

dS1 =
dρ2dρ3

h2h3
; (4)

and the element of volume dv is

dv =
dρ1dρ2dρ3

h1h2h3
. (5)
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EXAMPLE.

Show that h2
1 = (Dxρ1)2 + (Dyρ1)2 + (Dzρ1)2

h2
2 = (Dxρ2)2 + (Dyρ2)2 + (Dzρ2)2

h2
3 = (Dxρ3)2 + (Dyρ3)2 + (Dzρ3)2.

Suggestion: If h1 has the value just given
Dxρ1

h1
,
Dyρ1

h1
,
Dzρ1

h1
are the direc-

tion cosines of the normal at any given point of ρ1 = a. (v. Int. Cal. page 161.)
Then

dn1 =
Dxρ1

h1
dx+

Dyρ1

h1
dy +

Dzρ1

h1
dz =

1
h1
dρ1.

131. Laplace’s Equation in orthogonal curvilinear coördinates.
If we apply the special form of Green’s Theorem

y
∇2V dxdydz =

w
DnV dS (v. Art. 98)

to the space bounded by the surfaces ρ1 = a, ρ2 = b, ρ3 = c, ρ1 = a + dρ1,
ρ2 = b+ dρ2, ρ3 = c+ dρ3, we have

∇2V dρ1dρ2dρ3

h1h2h3
=

−h1Dρ1V
dρ2dρ3

h2h3
+ h1Dρ1V

dρ2dρ3

h2h3
+Dρ1

(
h1

h2h3
Dρ1V

)
dρ1dρ2dρ3

−h2Dρ2V
dρ3dρ1

h3h1
+ h2Dρ2V

dρ3dρ1

h3h1
+Dρ2

(
h2

h3h1
Dρ2V

)
dρ1dρ2dρ3

−h3Dρ3V
dρ1dρ2

h1h2
+ h3Dρ3V

dρ1dρ2

h1h2
+Dρ3

(
h3

h1h2
Dρ3V

)
dρ1dρ2dρ3;

whence

∇2V = h1h2h3

[
Dρ1

(
h1

h2h3
Dρ1V

)
+Dρ2

(
h2

h3h1
Dρ2V

)
+Dρ3

(
h3

h1h2
Dρ3V

)]
,

(6)
and Laplace’s Equation in our curvilinear system is

h1h2h3

[
Dρ1

(
h1

h2h3
Dρ1V

)
+Dρ2

(
h2

h3h1
Dρ2V

)
+Dρ3

(
h3

h1h2
Dρ3V

)]
= 0. (7)

If it happens that ∇2ρ1 = 0, V = ρ1 will satisfy (7) and we shall have

h1h2h3Dρ1

(
h1

h2h3

)
= 0. In like manner if ∇2ρ2 = 0 we have Dρ2

(
h2

h3h1

)
= 0,

and if ∇2ρ3 = 0 we have Dρ3

(
h3

h1h2

)
= 0; and therefore (7) reduces to

h2
1D

2
ρ1V + h2

2D
2
ρ2V + h2

3D
2
ρ3V = 0 (8)
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when ∇2ρ1 = 0, ∇2ρ2 = 0, and ∇2ρ3 = 0.

132. If instead of having the value of the Potential Function V given on
the surface of a sphere as in our Spherical Harmonic problem, we have it given
at all the points on the surface of an oblate spheroid, and are required to find its
value at any internal or external point, we can easily get a solution by methods
in no essential respect different from those already employed, if only we rightly
choose our system of coördinates.

If we take an ellipse and an hyperbola having the same foci, and revolve
them about the minor axis of the ellipse, we shall get a pair of surfaces which
are mutually perpendicular; a plane through the axis of revolution will cut both
the spheroid and the hyperboloid orthogonally.

The equations of the three surfaces can be written:—

F1(x, y, z, λ) =
x2

λ2
+

y2

λ2 − b2
+
z2

λ2
− 1 = 0 (1)

F2(x, y, z, µ) =
x2

µ2
+

y2

µ2 − b2
+
z2

µ2
− 1 = 0 (2)

F3(x, y, z, ν) = z − νx = 0, (3)

where λ2 > b2 > µ2, 2b being the distance between the foci.
For all values of λ, µ, and ν consistent with the inequality above written the

surfaces (1), (2), (3) intersect in real points and cut orthogonally.
λ, µ, and ν can be so chosen that the surfaces will intersect in any given point,

and therefore can be taken as a set of curvilinear coördinates, and Laplace’s
Equation can be expressed in terms of them by the aid of Formula [XV] Art. 1.

From (1), (2), and (3) we readily get

x2 =
λ2µ2

b2(1 + ν2)

y2 =
(λ2 − b2)(b2 − µ2)

b2

z2 =
λ2µ2ν2

b2(1 + ν2)
;


(4)

whence Dλx =
µ

b
√

1 + ν2
, Dλy =

λ

b

√
b2 − µ2

λ2 − b2
, Dλz =

µν

b
√

1 + ν2
;

and
1
h2

1

=
λ2 − µ2

λ2 − b2
(5)

[v. 130 (2)]. In like manner we get

1
h2

2

=
λ2 − µ2

b2 − µ2
(6)
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and
1
h2

3

=
λ2µ2

b2(1 + ν2)2
, (7)

and [XV] Art. 1 becomes

µ

b(1 + ν2)
√
b2 − µ2

Dλ[λ
√
λ2 − b2.DλV ]

+
λ

b(1 + ν2)
√
λ2 − b2

Dµ[µ
√
b2 − µ2.DµV ]

+
b(λ2 − µ2)

λµ
√

(λ2 − b2)(b2 − µ2)
Dν [(1 + ν2)DνV ] = 0, (8)

which is Laplace’s Equation in terms of our Spheroidal Coördinates λ, µ, and
ν.

If now in place of λ, µ, and ν we can introduce some function of λ, some
function of µ, and some function of ν which, therefore, will represent the same
set of orthogonal surfaces, and if we can choose these functions α, β, and γ,
which of course are functions of x, y, and z, so that ∇2α = 0, ∇2β = 0, and
∇2γ = 0, equation (8) must reduce to the simple and symmetrical form given
in [XVI] Art. 1.

These functions α, β, and γ are easily found. Equation (8) is ∇2V = 0
expressed in terms of λ, µ, and ν. Assume that V is a function of λ only; then
DµV = 0, and DνV = 0, and (8) reduces to

Dλ[λ
√
λ2 − b2.DλV ] = 0

whence λ
√
λ2 − b2 dV

dλ
= c1,

dV =
c1dλ

λ
√
λ2 − b2

,

and V =
c1
b

sec−1 λ

b
,

and is a function of λ which satisfies Laplace’s Equation.
Take this as α leaving c1 at present undetermined, so that

dα =
c1dλ

λ
√
λ2 − b2

and α =
c1
b

sec−1 λ

b
.

In the same way we get

dβ =
c2dµ

µ
√
b2 − µ2

and β =
c2
b

sech−1 µ

b
,

(v. Int. Cal. Art. 46, Ex.)

dγ =
c3dν

1 + ν2
, and γ = c3 tan−1 ν.
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Substituting these values in (8) and taking c1 = −c2 = b, and c3 = 1, (8)
reduces at once to

D2
αV

λ2
+
D2
βV

µ2
+
λ2 − µ2

λ2µ2
D2
γV = 0, (9)

or since λ = b secα, µ = b sechβ, and ν = tan γ, (10)

to cos2 αD2
αV + cosh2 βD2

βV + (cosh2 β − cos2 α)D2
γV = 0 (11)

which is Laplace’s Equation in terms of what we may call Normal Oblate
Spheroidal Coördinates.

In using (11) it is to be noted that the point whose coördinates are (α, β, γ)
is the point of intersection of an oblate spheroid whose semi-axes are b secα and
b tanα, an unparted hyperboloid of revolution whose semi-axes are b sechβ and
b tanhβ, and a plane containing the axis of the system and making the angle γ
with a fixed plane; and that if the axis of revolution is the axis of Y and the
fixed plane is the plane of XY , the rectangular coördinates of (α, β, γ) are

x = b secα sechβ cos γ, y = b tanα tanhβ, z = b secα sechβ sin γ (12)

[v. (4)].
If now we let α range from 0 to

π

2
, β from −∞ to∞, and γ from 0 to 2π, we

shall be able to represent all points in space; and if we agree that negative values
of β shall belong to points below a plane through the origin and perpendicular
to the axis of revolution and positive values of β to points above that plane,
not only shall we have no ambiguity, but also the rectangular coördinates of any
point as given in (12) will have their proper signs.

EXAMPLES.

1. If the spheroid is a prolate spheroid, the ellipse and confocal hyperbola
must be revolved about the major axis of the ellipse, and the plane must contain
that axis. In place of equations (1), (2), and (3) of Art. 132 we have, then,

x2

λ2
+

y2

λ2 − b2
+

z2

λ2 − b2
− 1 = 0

x2

µ2
+

y2

µ2 − b2
+

z2

µ2 − b2
− 1 = 0

z − νy = 0

where λ2 > b2 > µ2.

h2
1 =

λ2 − b2

λ2 − µ2
, h2

2 =
b2 − µ2

λ2 − µ2
, h2

3 =
b2(1 + ν2)2

(λ2 − b2)(b2 − µ2)
.
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Laplace’s Equation becomes

1
b2(1 + ν2)

Dλ[(λ2 − b2)DλV ] +
1

b2(1 + ν2)
Dµ[(b2 − µ2)DµV ]

+
λ2 − µ2

(λ2 − b2)(b2 − µ2)
Dν [(1 + ν2)DνV ] = 0. (1)

(1) reduces to
D2
αV

λ2 − b2
+

D2
βV

b2 − µ2
+

λ2 − µ2

(λ2 − b2)(b2 − µ2)
D2
γV = 0, (2)

where dα = − bdλ

λ2 − b2
, dβ =

bdµ

b2 − µ2
, dγ =

dν

1 + ν2
,

α = ctnh−1 λ

b
, β = tanh−1 µ

b
, and γ = tan−1 ν.

Since λ = b ctnhα, µ = b tanhβ, and ν = tan γ

(2) can be reduced to

sinh2 αD2
αV + cosh2 βD2

βV + (sinh2 α+ cosh2 β)D2
γV = 0. (3)

In using (3) it is to be noted that the point (α, β, γ) is the point of intersec-
tion of a prolate spheroid whose semi-axes are b ctnhα and b cschα, a biparted
hyperboloid of revolution whose semi-axes are b tanhβ and b sechβ, and a plane
containing the axis of revolution and making the angle γ with a fixed plane.

If the fixed plane is that of (XY ) the rectangular coördinates of any point
(α, β, γ) are

x = b ctnhα tanhβ, y = b cschα sechβ cos γ, z = b cschα sechβ sin γ,

and α may range from ∞ to 0, β from −∞ to ∞, and γ from 0 to 2π. Negative
values of β are to be taken for points lying to the left of a plane through the
origin perpendicular to the axis of revolution.

2. Transform Laplace’s Equation in Spherical Coördinates [XIII] Art. 1 to
the symmetrical form

α2D2
αV + cosh2 βD2

βV + cosh2 βD2
γV = 0

where α =
1
r
, β = log tan

θ

2
, and γ = φ.

3. Transform Laplace’s Equation in Cylindrical Coördinates [XIV] Art. 1 to
the symmetrical form

D2
αV +D2

βV + e2αD2
γV = 0

where α = log r, β = φ, and γ = z.
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133. In each of the cases we have considered, it has been easy to pass
from Laplace’s Equation in terms of the chosen coördinates representing an
orthogonal system of surfaces to the symmetrical form [XVI] Art. 1; and it is
evident that our new coördinate α is a value of V corresponding to such a
distribution that the surfaces obtained by giving particular values to ρ1 are
equipotential surfaces; that β is a value of V corresponding to such a distribution
that the surfaces obtained by giving particular values to ρ2 are equipotential
surfaces; and that γ is a value of V corresponding to such a distribution that the
surfaces obtained by giving particular values to ρ3 are equipotential surfaces.
α, β, and γ are called by Lamé “thermometric parameters.”

The condition that these values should exist, for a given system of surfaces,
that is, that the distribution described above should be possible, is readily
obtained. We shall work it out for α. It is merely the condition that V in
Laplace’s Equation may be a function of ρ1 alone.

If V is a function of ρ1 alone

DxV =
dV

dρ1
Dxρ1, DyV =

dV

dρ1
Dyρ1, DzV =

dV

dρ1
Dzρ1,

D2
xV =

d2V

dρ1
2 (Dxρ1)2 +

dV

dρ1
D2
xρ1

D2
yV =

d2V

dρ1
2 (Dyρ1)2 +

dV

dρ1
D2
yρ1

D2
zV =

d2V

dρ1
2 (Dzρ1)2 +

dV

dρ1
D2
zρ1.

Therefore [(Dxρ1)2 + (Dyρ1)2 + (Dzρ1)2]
d2V

dρ1
2

+ [D2
xρ1 +D2

yρ1 +D2
zρ1]

dV

dρ1
= 0

whence
D2
xρ1 +D2

yρ1 +D2
zρ1

(Dxρ1)2 + (Dyρ1)2 + (Dzρ1)2
= − d

2V

dρ1
2
÷ dV

dρ1
.

or
∇2ρ1

h2
1

= F1(ρ1)

where F1(ρ1) may be any function of ρ1 alone. Our required conditions are then

∇2ρ1

h2
1

= F1(ρ1)

∇2ρ2

h2
2

= F2(ρ2)

∇2ρ3

h2
3

= F3(ρ3)


(1)

and when they are fulfilled the original curvilinear coördinates ρ1, ρ2, ρ3, corre-
spond to possible equipotential or isothermal surfaces, thermometric parameters
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α, β, and γ exist, and the reduction of Laplace’s Equation to the symmetrical
form [XVI] Art. 1 is possible.

134. Returning to our Oblate Spheroid problem of Art. 132 we can pro-
ceed as usual to break up our equation (11) Art. 132.

Assume that V = L.M.N , where L is a function of α only, M of β only, and
N of γ only. (11) Art. 132 becomes

cos2 α

L

d2L

dα2
+

cosh2 β

M

d2M

dβ2
+

[cosh2 β − cos2 α]
N

d2N

dγ2
= 0

or
1
L

cos2 α

cosh2 β − cos2 α

d2L

dα2
+

1
M

cosh2 β

cosh2 β − cos2 α

d2M

dβ2
= − 1

N

d2N

dγ2
.

The first member is independent of γ, and the second member is independent
of α and β, and the two members are identically equal. The second member
is then independent of α, β, and γ and must be constant; call it n2. We have,
then,

d2N

dγ2
+ n2N = 0 (1)

and
cos2 α

L

d2L

dα2
+

cosh2 β

M

d2M

dβ2
− n2(cosh2 β − cos2 α) = 0. (2)

(1) gives us N = A cosnγ +B sinnγ. (3)

(2) can be written

cos2 α

L

d2L

dα2
+ n2 cos2α = n2 cosh2 β − cosh2 β

M

d2M

dβ2
= m(m+ 1),

whence cos2 α
d2L

dα2
+ [n2 cos2 α−m(m+ 1)]L = 0 (4)

and cosh2 β
d2M

dβ2
+ [m(m+ 1)− n2 cosh2 β]M = 0. (5)

If we introduce x = tanhβ in (5) it becomes

(1− x2)
d2M

dx2
− 2x

dM

dx
+
[
m(m+ 1)− n2

1− x2

]
M = 0 (6)

where since x = tanhβ and β may have any value from −∞ to ∞, x may have
any value between −1 and 1. (6) is a familiar equation having for a particular
solution

M = (1− x2)
n
2
dnPm(x)
dxn

= Pnm(x) = Pnm(tanhβ). (7)

(v. Arts. 101 and 102).
If we introduce in (4) x = tanα it reduces to

(1 + x2)
d2L

dx2
+ 2x

dL

dx
+
[

n2

1 + x2
−m(m+ 1)

]
L = 0. (8)



ELLIPSOIDAL HARMONICS. 247

(8) is an unfamiliar equation, but it can be treated as (6) was treated if we take
the pains to go back to the beginning and follow the steps of the treatment of
Legendre’s Equation.

This labor can be saved, however, by noting that if we let x =
y

i
(8) becomes

(1− y2)
d2L

dy2
− 2y

dL

dy
+
[
m(m+ 1)− n2

1− y2

]
L = 0

and is identical in form with (6). Hence

L = Pnm(y) and L = (1− y2)
n
2
dnQm(y)
dyn

(v. Art. 101),

where y = i tanα, are particular solutions of (4).
We can avoid imaginaries if we use the values

L = (−i)m−nPnm(y) and L = im+n+1(1− y2)
n
2
dnQm(y)
dyn

. (9)

Since we assumed V = L.M.N we have

and

V = (A cosnγ +B sinnγ)Pnm(tanhβ)(−i)m−nPnm(i tanα)

V = (A cosnγ +B sinnγ)Pnm(tanhβ)im+n+1 secn α
dnQm(i tanα)
(d(i tanα))n

 (10)

as particular solutions of (11) Art. 132.
If the problem is symmetrical with respect to the axis of the spheroid D2

γV =
0, n2 = 0 and our particular solutions (10) reduce to

and

V = (−i)mPm(i tanα)Pm(tanhβ)

V = im+1Qm(i tanα)Pm(tanhβ).

}
(11)

If, then, V is given on the surface of a spheroid as a function of β and γ, we
must express it as a function of tanhβ and γ, and shall be obliged to develop it
in terms of Spherical Harmonics of tanhβ and γ by the formulas of Chapter VII,
using the first equation in (10) for the value of V at an internal point, and the
second for the value of V at an external point. If the problem is symmetrical,
we must develop in Zonal Harmonics of tanhβ by the formulas of Chapter VI.

A convenient form for Qm(i tanα) is obtained from (2) Art. 100; it is

Qm(i tanα) = −iPm(i tanα)
∞w

tanα

dx

(1 + x2)[Pm(xi)]2
. (12)

Hence Q0(i tanα) = −i
∞w

tanα

dx

1 + x2
= −i

(π
2
− α

)
. (13)
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EXAMPLES.

1. A conductor in the form of an oblate spheroid whose semi-axes are
b secα0 and b tanα0 is charged with electricity and is found to be at poten-
tial V0; find the value of the potential function at any internal or external point.

Here V0 = V0P0(tanhβ). Hence at an internal point

V = V0
P0(i tanα)
P0(i tanα0)

P0(tanhβ) = V0, (1)

and at an external point

V = V0
Q0(i tanα)
Q0(i tanα0)

P0(tanhβ) = V0

(π
2
− α

)
(π

2
− α0

) . (2)

Since V in (2) involves α only, the equipotential surfaces are all spheroids con-
focal with the conductor.

2. The upper half of an oblate spheroid whose semi-axes are b secα0 and
b tanα0 is kept at the temperature unity, and the lower half at the temperature
zero. Find the permanent temperature at any internal point.

Ans. u =
1
2

+
3
4
P1(i tanα)
P1(i tanα0)

P1(tanhβ)− 7
8
.
1
2
P3(i tanα)
P3(i tanα0)

P3(tanhβ) + · · ·

(v. Art. 93). u may be expressed in terms of x, y, and z without serious difficulty
[v. (12) Art. 132].

u =
1
2

+
3
4
y

c
− 7

8
.
1
2
.
1
2

[25y3 − 15y(x2 + y2 + z2 − b2)− 9b2y]
5c3 + 3b2c

+ · · ·

if 2c = 2b tanα0 = minor axis of spheroid.

135. Let us now find the potential function at an external point due to the
attraction of a solid homogeneous oblate spheroid, using the method employed
in Arts. 98 and 99.

Consider first the potential function due to a shell bounded by the spheroids
for which α = φ and α = φ+ dφ.

By (1) Art. 98 we have

4πρκ = [DnV1 −DnV2]α=φ, (1)

where ρ is the density and κ the thickness of the shell, V1 the value of the
potential function at an internal point, and V2 the value of the potential function
at an external point.

Let V1 =
∑

Am(−i)mPm(i tanα)Pm(tanhβ)

and V2 =
∑

Bmi
m+1Qm(i tanα)Pm(tanhβ) [v. (11) Art. 134].
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Since V1 and V2 must have the same value when α = φ

Am = Bmi
2m+1Qm(i tanφ)

Pm(i tanφ)
= (−1)mBm

∞w

tanφ

dx

(1 + x2)[Pm(xi)]2
(2)

[v. (12) Art. 134].

Hence V1 =
∑

imBmPm(tanhβ)Pm(i tanα)
∞w

tanφ

dx

(1 + x2)[Pm(xi)]2

and V2 =
∑

imBmPm(tanhβ)Pm(i tanα)
∞w

tanα

dx

(1 + x2)[Pm(xi)]2
.


(3)

DnV1 = DαV1.Dnα. DnV2 = DαV2.Dnα

[DnV1 −DnV2]α=φ = [DαV1 −DαV2]α=φ(Dnα)α=φ

= [Dα(V1 − V2)]α=φ[Dnα]α=φ.

V1 − V2 =
∑

imBmPm(tanhβ)Pm(i tanα)
tanαw

tanφ

dx

(1 + x2)[Pm(xi)]2
.

Dα(V1 − V2) =
∑

imBmPm(tanhβ)
[
Pm(i tanα)

sec2 α

(1 + tan2 α)[Pm(i tanα)]2

+
dPm(i tanα)

dα

tanαw

tanφ

dx

(1 + x2)[Pm(xi)]2

]
.

Dα[V1 − V2]α=φ =
∑

imBm
Pm(tanhβ)
Pm(i tanφ)

.

Dnα =
dα

dn

dn =
dρ1

h1
=
dλ

h1
=

√
λ2 − µ2

√
λ2 − b2

dλ = b secα
√

tan2 α+ tanh2 β.dα (4)

v. Art. 130 (3), and Art. 132 (5) and (10).

[Dnα]α=φ =
1

b secφ
√

tan2 φ+ tanh2 β
.

Hence

[DnV1 −DnV2]α=φ =
1

b secφ
√

tan2 φ+ tanh2 β

∑
imBm

Pm(tanhβ)
Pm(i tanφ)

.

κ = [dn]α=φ = b secφ
√

tan2 φ+ tanh2 β.dφ



ELLIPSOIDAL HARMONICS. 250

by (4), and (1) may be written

4πρb2 sec2 φ(tan2 φ+ tanh2 β)dφ =
∑

imBm
Pm(tanhβ)
Pm(i tanφ)

. (5)

Since tanh2 β = 1
3P0(tanhβ) + 2

3P2(tanhβ)

by (5) Art. 95, to satisfy (5) we must give m the values 0 and 2 and

B0 = 4
3πρb

2 sec2 φ(3 tan2 φ+ 1)dφ

and B2 = 4
3πρb

2 sec2 φ(3 tan2 φ+ 1)dφ.

So that by (3)

V1 = 4
3πρb

2 sec2 φ(3 tan2 φ+ 1)dφ
[ ∞w

tanφ

dx

1 + x2

− P2(tanhβ)P2(i tanα)
∞w

tanφ

dx

(1 + x2)[P2(xi)]2

]
(6)

and V2 = 4
3πρb

2 sec2 φ(3 tan2 φ+ 1)dφ[iQ0(i tanα)

+ i3P2(tanhβ)Q2(i tanα)]. (7)

The potential function at an external point due to the solid spheroid for which
α = α0 is

V =
φ=α0w

φ=0

V2 = 4
3πρb

2 sec2 α0 tanα0[iQ0(i tanα) + i3P2(tanhβ)Q2(i tanα)]. (8)

If 2a is the major axis and 2c the minor axis of the spheroid

4
3πρb

2 sec2 α0 tanα0 = 4
3

πρa2c

b
=
M

b

where M is the mass of the spheroid. Therefore

V =
M

b
[iQ0(i tanα) + i3P2(tanhβ)Q2(i tanα)] (9)

is the required value. (9) can be reduced to

V =
M

b

{
π

2
− α+

1
4

[(π
2
− α

)
(3 tan2 α+ 1)− 3 tanα

]
[3 tanh2 β − 1]

}
. (10)
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EXAMPLES.

1. Break up the equation (3) Ex. 1, Art. 132, for the prolate spheroid, and
obtain particular solutions of the term

V = (A cosnγ +B sinnγ)Pnm(tanhβ)Pnm(ctnhα),

V = (A cosnγ +B sinnγ)Pnm(tanhβ)(−1)
n
2 cschn α

dnQm(ctnhα)
(d ctnhα)n

.

2. Break up and solve the equations of Exs. 2 and 3, Art. 132, and show
that they lead to familiar forms.

3. If in Ex. 1, Art. 132, the conductor is a prolate spheroid whose semi-axes
are b ctnhα0 and b cschα0 show that

V = V0 at an internal point. V = V0
α

α0
at an external point.

4. Show that the potential function at an external point due to the attrac-
tion of a homogeneous solid prolate spheroid is

V =
M

b
[Q0(ctnhα)− P2(tanhβ)Q2(ctnhα)].

Ellipsoidal Harmonics.

136. If we are dealing with an ellipsoid instead of a spheroid, we can take
as our orthogonal system of surfaces a set of confocal quadrics;

x2

λ2
+

y2

λ2 − b2
+

z2

λ2 − c2
− 1 = 0

x2

µ2
+

y2

µ2 − b2
+

z2

µ2 − c2
− 1 = 0

x2

ν2
+

y2

ν2 − b2
+

z2

ν2 − c2
− 1 = 0


(1)

where λ2 > c2 > µ2 > b2 > ν2. Here the first surface is an ellipsoid, the second
an unparted hyperboloid, and the third a biparted hyperboloid. Each of the
three principal sections of the system consists of confocal conics, and it is well
known and is easily shown that the surfaces cut orthogonally. λ, µ, and ν will
be our curvilinear coördinates, and are known as Ellipsoidal Coördinates.

We find without difficulty that

x2 =
λ2µ2ν2

b2c2
, y2 =

(λ2 − b2)(µ2 − b2)(b2 − ν2)
b2(c2 − b2)

,

z2 =
(λ2 − c2)(c2 − µ2)(c2 − ν2)

c2(c2 − b2)
, (2)
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h2
1 =

(λ2 − b2)(λ2 − c2)
(λ2 − µ2)(λ2 − ν2)

, h2
2 =

(µ2 − b2)(c2 − µ2)
(µ2 − ν2)(λ2 − µ2)

,

h2
3 =

(b2 − ν2)(c2 − ν2)
(λ2 − ν2)(µ2 − ν2)

. (3)

To avoid ambiguity, we shall suppose that of the nine semi-axes in (1)√
c2 − µ2 is to be taken with the positive sign for a point on the half of the

unparted hyperboloid on which z is positive, and with the negative sign for a
point on the half on which z is negative;

√
b2 − ν2 is to be taken with the positive

sign for a point on the half of the biparted hyperboloid on which y is positive,
and with the negative sign for a point on the half on which y is negative; ν is to
be taken positive for a point on the half of the biparted hyperboloid on which
x is positive, and negative for a point on the half on which x is negative, and
that the remaining six are to be always positive. It follows that our Ellipsoidal
Coördinates have the disadvantage that to fully fix a point we need to know not
merely the values of its coördinates λ, µ, and ν, but the signs of

√
c2 − µ2, and√

b2 − ν2 as well.
We shall see later, Art. 139, when we come to introduce what we may call

the Normal Ellipsoidal Coördinates α, β, and γ that they are free from this
disadvantage.

It is to be observed that λ may range from c to∞, µ from b to c, and ν from
−b to b.

The element of length perpendicular to the Ellipsoid is

dn =
dλ

h1
=

√
(λ2 − µ2)(λ2 − ν2)
(λ2 − b2)(λ2 − c2)

.dλ. (4)

The element of Ellipsoidal surface is

dS =
dµdν

h2h3
= (µ2 − ν2)

√
(λ2 − µ2)(λ2 − ν2)

(µ2 − b2)(c2 − µ2)(b2 − ν2)(c2 − ν2)
.dµdν, (5)

and the element of volume is

dv =
dλdµdν

h1h2h3

=
(λ2 − µ2)(λ2 − ν2)(µ2 − ν2)√

(λ2 − b2)(λ2 − c2)(µ2 − b2)(c2 − µ2)(b2 − ν2)(c2 − ν2)
dλdµdν. (6)

The surface integral of any given function of µ and ν taken over the ellipsoid
is

w
f(µ, ν)dS =

bw

−b

dν

cw

b

[f1(µ, ν) + f2(µ, ν) + f3(µ, ν)

+ f4(µ, ν)](µ2 − ν2)

√
(λ2 − µ2)(λ2 − ν2)

(µ2 − b2)(c2 − µ2)(b2 − ν2)(c2 − ν2)
.dµ, (7)
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where f1(µ, ν), f2(µ, ν), f3(µ, ν) and f4(µ, ν) are the values of the given function
on the four quarters of the ellipsoid into which it is divided by the planes of
(XY ) and (XZ).

Laplace’s Equation proves reducible to

(µ2 − ν2)D2
αV + (λ2 − ν2)D2

βV + (λ2 − µ2)D2
γV = 0 (8)

where α = c

λw

c

dλ√
(λ2 − b2)(λ2 − c2)

, β = c

µw

b

dµ√
(c2 − µ2)(µ2 − b2)

,

γ = c

νw

0

dν√
(b2 − ν2)(c2 − ν2)

. (9)

α, β, and γ can be expressed as Elliptic Integrals of the first class and are

α = F
(b
c
,
π

2

)
− F

(b
c
, sin−1 c

λ

)
, β = F

(√
1− b2

c2
, sin−1

√√√√√√√1− b2

µ2

1− b2

c2

)
,

γ = F
(b
c
, sin−1 ν

b

)
; (10)

whence λ =
c

sn(K − α)

(
mod

b

c

)
= c

dnα
cnα

(
mod

b

c

)
,

µ =
b

dnβ

(
mod

(
1− b2

c2

) 1
2
)
, ν = b sn γ

(
mod

b

c

)
(11)

(v. Int. Cal. Arts. 179, 192, and 196).

137. If in (8) Art. 136 we assume V = L.M.N where L involves α only,
M involves β only, and N involves γ only, (8) can be written

µ2 − ν2

L

d2L

dα2
+
λ2 − ν2

M

d2M

dβ2
+
λ2 − µ2

N

d2N

dγ2
= 0. (1)

(1) is too complicated to be broken up by our usual method.
If, however, we let

1
L

d2L

dα2
=
∑
akλ

k,
1
M

d2M

dβ2
=
∑
bkµ

k,
1
N

d2N

dγ2
=
∑
ckν

k,

substitute in (1) and make use of the fact that the result must be identically
zero, we find that the coefficients are zero for all values of k except k = 0 and
k = 2, and that a0 = −b0 = c0, and a2 = −b2 = c2.
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Therefore (1) can be broken up into the three equations

d2L

dα2
= (a0 + a2λ

2)L

d2M

dβ2
= −(a0 + a2µ

2)M

d2N

dγ2
= (a0 + a2ν

2)N.

We shall find it convenient to take a2 as m(m + 1) and a0 as −(b2 + c2)p;
whence

d2L

dα2
− [m(m+ 1)λ2 − (b2 + c2)p]L = 0

d2M

dβ2
+ [m(m+ 1)µ2 − (b2 + c2)p]M = 0

d2N

dγ2
− [m(m+ 1)ν2 − (b2 + c2)p]N = 0.


(2)

If now in (2) we replace α, β, and γ by their values in terms of λ, µ, and ν,
we get

(λ2 − b2)(λ2 − c2)
d2L

dλ2
+ λ(λ2 − b2 + λ2 − c2)

dL

dλ

−[m(m+ 1)λ2 − (b2 + c2)p]L = 0

(µ2 − b2)(µ2 − c2)
d2M

dµ2
+ µ(µ2 − b2 + µ2 − c2)

dM

dµ

−[m(m+ 1)µ2 − (b2 + c2)p]M = 0

(ν2 − b2)(ν2 − c2)
d2N

dν2
+ ν(ν2 − b2 + ν2 − c2)

dN

dν

−[m(m+ 1)ν2 − (b2 + c2)p]N = 0.



(3)

Whence if L = Epm(λ), it follows that M = Epm(µ) and N = Epm(ν), and that

V = Epm(λ)Epm(µ)Epm(ν) (4)

is a solution of Laplace’s Equation, (8) Art. 136.
The equation

(x2 − b2)(x2 − c2)
d2z

dx2
+ x(x2 − b2 + x2 − c2)

dz

dx

− [m(m+ 1)x2 − (b2 + c2)p]z = 0 (5)

is known as Lamé’s Equation, and Epm(x) as a Lamé’s Function or an Ellipsoidal
Harmonic. We shall suppose m a positive integer.
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To get a particular solution of (5) let z =
∑
akx

k. Substitute in (5) and
reduce and we get

[k(k + 1)−m(m+ 1)]ak − (b2 + c2)[(k + 2)2 − p]ak+2

+ b2c2(k + 3)(k + 4)ak+4 = 0. (6)

We have now only to choose a sequence of coefficients satisfying (6), and we
may take any two consecutive coefficients arbitrarily.

(6) which is ordinarily a relation connecting three consecutive coefficients
reduces to a relation between two when k = m, when k = −3, and when
k = −4. If we take am+2 = 0, am+4, am+6, &c., will vanish. Let am = 1. If m
is even the coefficient of a0 in (6) will be zero; if p has such a value that a−2

is zero, a−4, a−6, &c., will be zero, and there will be no terms in the solution
involving negative powers of x.

If we write the values of am−2, am−4, &c., by the aid of (6) we see that am−2

is of the first degree in p, am−4 of the second degree in p, &c., and a−2 of the
degree

m

2
+ 1 in p. There are then

m

2
+ 1 values of p which we shall call p1,

p2, p3, &c., for which a−2 will vanish, and for which our solutions will be of the
form

Epm(x) = xm + am−2x
m−2 + am−4x

m−4 + · · ·+ a0

if m is even.
If m is odd, the coefficient of a1 in (6) will vanish and we can choose p so

that a−1 shall be zero, and then all coefficients of lower order will vanish. a−1

is of the degree
m+ 1

2
in p, and there will be

m+ 1
2

values p1, p2, p3, &c., of p
for which

Epm(x) = xm + am−2x
m−2 + am−4x

m−4 + · · ·+ a1x.

Following Heine we shall call the solution just obtained Kp
m(x) so that

Kp
m(x) = xm + am−2x

m−2 + am−4x
m−4 + · · · (7)

terminating with a0 if m is even, and with a1x if m is odd. If m is even, there

are
m

2
+ 1 of these functions Kp1

m (x), Kp2
m (x), &c., and there are

m+ 1
2

of them

if m is odd. The coefficients can be computed by the aid of (6).
If in Lamé’s Equation (5) we let z = v

√
x2 − b2 we get the equation

(x2 − b2)(x2 − c2)
d2v

dx2
+ x[x2 − b2 + 3(x2 − c2)]

dv

dx

− [(m+ 2)(m− 1)x2 + c2 − (b2 + c2)p]v = 0. (8)

Letting v =
∑
akx

k we obtain the relation

[k(k + 3)− (m+ 2)(m− 1)]ak − {(b2 + c2)[(k + 2)2 − p] + c2(2k + 5)}ak+2

+ b2c2(k + 3)(k + 4)ak+4 = 0. (9)
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Proceeding exactly as before, we find that there are
m

2
values q1, q2, q3, &c.,

of p for which v = xm−1 +am−3x
m−3 + · · ·+a1x if m is even, and

m+ 1
2

values

for which v = xm−1 + am−3x
m−3 + · · ·+ a0 if m is odd.

Calling v
√
x2 − b2 Lpm(x) so that

Lpm(x) =
√
x2 − b2[xm−1 + am−3x

m−3 + am−5x
m−5 + · · · ], (10)

terminating with a1x if m is even and with a0 if m is odd, we have
m

2
values

of Epm(x), namely Lq1m(x), Lq2m(x), &c., of the form (10) if m is even and
m+ 1

2
values if m is odd.

By interchanging b and c in (8), (9), and (10) we may show that if

Mp
m(x) =

√
x2 − c2[xm−1 + am−3x

m−3 + am−5x
m−5 + · · · ] (11)

there are
m

2
values of Epm(x), namely Mr1

m (x), Mr2
m (x), Mr3

m (x), &c., of the form

(11) if m is even and
m+ 1

2
values if m is odd.

Finally if in Lamé’s Equation (5) we let z = v
√

(x2 − b2)(x2 − c2) we get

(x2 − b2)(x2 − c2)
d2v

dx2
+ 3x(x2 − b2 + x2 − c2)

dv

dx

− [(m+ 3)(m− 2)x2 − (b2 + c2)(p− 1)]v = 0. (12)

If now we let v =
∑
akx

k we obtain the relation

[k(k + 5)− (m− 2)(m+ 3)]ak
− (b2 + c2)[(k + 2)(k + 4) + 1− p]ak+2 + b2c2(k + 3)(k + 4)ak+4 = 0. (13)

Proceeding as before we find that there are
m

2
values s1, s2, s3, &c., of p for

which v = xm−2 + am−4x
m−4 + am−6x

m−6 + · · ·+ a0 if m is even, and
m+ 1

2
values for which v = xm−2 + am−4x

m−4 + · · ·+ a1x if m is odd.
Calling v

√
(x2 − b2)(x2 − c2) Np

m(x) so that

Np
m(x) =

√
(x2 − b2)(x2 − c2)[xm−2 + am−4x

m−4 + am−6x
m−6 + · · · ] (14)

terminating with a0 if m is even and with a1x if m is odd, we have
m

2
values of

Epm(x), namely Ns1
m (x), Ns2

m (x), Ns3
m (x), &c., of the form (14) if m is even and

m− 1
2

values if m is odd.
Summing up our results we see that there are 2m+ 1 Ellipsoidal Harmonics

Epm(x) each of which is a finite sum of the mth degree in x, or in x and
√
x2 − b2,

or in x and
√
x2 − c2, or in x and

√
x2 − b2 and

√
x2 − c2.
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It was proved by Lamé that the 2m+ 1 values of p, namely p1, p2, p3, &c.,
q1, q2, q3, &c., r1, r2, r3, &c., s1, s2, s3, &c., were all real, and by Liouville that
they were all different.

We give tables of the Ellipsoidal Harmonics for m = 0, m = 1, m = 2, and
m = 3. The coefficients were obtained by the aid of formulas (6), (9), and (13).

E0(x)

K0(x)= 1

L0(x) = 0

M0(x)= 0

N0(x) = 0

E1(x)

K1(x)= x

L1(x) =
√
x2 − b2

M1(x)=
√
x2 − c2

N1(x) = 0

E2(x)

Kp1
2 (x)= x2 − 1

3 [b2 + c2 −
√

(b2 + c2)2 − 3b2c2]

Kp2
2 (x)= x2 − 1

3 [b2 + c2 +
√

(b2 + c2)2 − 3b2c2]

L2(x) = x
√
x2 − b2

M2(x) = x
√
x2 − c2

N2(x) =
√

(x2 − b2)(x2 − c2)

E3(x)

Kp1
3 (x)= x3 − x

5
[2(b2 + c2)−

√
4(b2 + c2)2 − 15b2c2]

Kp2
3 (x)= x3 − x

5
[2(b2 + c2) +

√
4(b2 + c2)2 − 15b2c2]

Lq13 (x) =
√
x2 − b2[x2 − 1

5 (b2 + 2c2 −
√

(b2 + 2c2)2 − 5b2c2)]

Lq23 (x) =
√
x2 − b2[x2 − 1

5 (b2 + 2c2 +
√

(b2 + 2c2)2 − 5b2c2)]

Mr1
3 (x)=

√
x2 − c2[x2 − 1

5 (2b2 + c2 −
√

(2b2 + c2)2 − 5b2c2)]

Mr2
3 (x)=

√
x2 − c2[x2 − 1

5 (2b2 + c2 +
√

(2b2 + c2)2 − 5b2c2)]

N3(x) = x
√

(x2 − b2)(x2 − c2)

It is to be noted that since in the solution (4) of Laplace’s Equation,

V = Epm(λ)Epm(µ)Epm(ν),

we have the same m and p in each of the three factors, we shall have to deal
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merely with products made up of factors of the same form, for example,

Kpk
m (λ)Kpk

m (µ)Kpk
m (ν), Lqkm (λ)Lqkm (µ)Lqkm (ν), &c.;

and that in a solution of the form

V =
∑

Am,pE
p
m(λ)Epm(µ)Epm(ν)

we shall have for a given m just 2m+ 1 terms.

138. From the particular solution of Lamé’s Equation [(5) Art. 137] z =
Epm(x), we can get by formula (5), Art. 18, the general solution.

It is z = AEpm(x) +BEpm(x)
∞w

x

dx√
(x2 − b2)(x2 − c2)[Epm(x)]2

. (1)

Making A = 0 and B = 2m + 1 we get a second form of particular solution of
Lamé’s Equation, z = F pm(x) where

F pm(x) = (2m+ 1)Epm(x)
∞w

x

dx√
(x2 − b2)(x2 − c2)[Epm(x)]2

. (2)

We shall call F pm(x) a Lamé’s Function of the second kind.
It is easily seen to approach the value zero as x is indefinitely increased.

EXAMPLES.

1. If an ellipsoidal conductor is charged with electricity, and is found to be
at potential V0, show that since V0 = V0K0(λ),

V = V0K0(λ)K0(µ)K0(ν) = V0

at an internal point, and

V = V0K0(µ)K0(ν)
[
K0(λ)

∞w

λ

dx√
(x2 − b2)(x2 − c2)[K0(x)]2

÷K0(λ0)
∞w

λ0

dx√
(x2 − b2)(x2 − c2)[K0(x)]2

]

= V0

[ ∞w
λ

dx√
(x2 − b2)(x2 − c2)

÷
∞w

λ0

dx√
(x2 − b2)(x2 − c2)

]
= V0

F
(b
c
, sin−1 c

λ

)
F
(b
c
, sin−1 c

λ0

) ,

whence V = V0

(
F
(b
c
,
π

2

)
− α

)
F
(b
c
,
π

2

)
− α0

v. (10) Art. 136.
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2. Find the value of the potential function at an external point due to the
attraction of a solid homogeneous ellipsoid (v. Art. 135).

Observe that

(l2 − µ2)(l2 − ν2) = 1
3 [3l4 − 2(b2 + c2)l2 + b2c2]K0(µ)K0(ν)

+ 1
2

[
1 +

b2 + c2 − 3l2√
(b2 + c2)2 − 3b2c2

]
Kp1

2 (µ)Kp1
2 (ν)

+ 1
2

[
1− b2 + c2 − 3l2√

(b2 + c2)2 − 3b2c2

]
Kp2

2 (µ)Kp2
2 (ν);

and that

λ0w

0

4
3πρ

3l4 − 2(b2 + c2)l2 + b2c2√
(l2 − b2)(l2 − c2)

dl = 4
3πρλ0

√
(λ2

0 − b2)(λ2
0 − c2) = M

where M is the mass of the ellipsoid.

Ans. V = M

{ ∞w
λ

dx√
(x2 − b2)(x2 − c2)

− 3
2
√

(b2 + c2)2 − 3b2c2[
Kp1

2 (µ)Kp1
2 (ν)Kp1

2 (λ)
∞w

λ

dx√
(x2 − b2)(x2 − c2).(Kp1

2 (x))2

−Kp2
2 (µ)Kp2

2 (ν)Kp2
2 (λ)

∞w

λ

dx√
(x2 − b2)(x2 − c2).(Kp2

2 (x))2

]}
.

139. If for the sake of brevity we represent
b

c
by k, and

(
1− b2

c2

) 1
2

by k′

in the formulas (11) Art. 136 we have

λ = c
dnα
cnα

(modk), µ =
b

dnβ(modk′)
, ν = b sn γ(modk) (1)

and from these we get without difficulty (v. Int. Cal. Art. 192)√
λ2 − b2 =

ck′

cnα(modk)
,

√
µ2 − b2 =

bk′ snβ
dnβ

(modk′),√
b2 − ν2 = b cn γ(modk),

√
λ2 − c2 =

ck′ snα
cnα

(modk),√
c2 − µ2 =

ck′ cnβ
dnβ

(modk′),
√
c2 − ν2 = cdn γ(modk).


(2)

If we let α range from 0 to K, and β from 0 to 2K ′, and γ from 0 to 4K,
where K and K ′ are the complete Elliptic Integrals F

(
k,
π

2

)
and F

(
k′,

π

2

)
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respectively, (α, β, γ) may represent any point in space, and there will be no
ambiguity in sign (v. Art. 136).

We may note that if 0 < β < K ′, z is positive; if K ′ < β < 2K ′, z is negative;
if 0 < γ < K, x and y are both positive; if K < γ < 2K, x is positive and y
negative; if 2K < γ < 3K, x and y are both negative; and if 3K < γ < 4K, x
is negative and y positive (v. Art. 136).

We can write the values in (4), (5), (6), and (7), Art. 136, more neatly by
bringing in α, β, and γ. We get

dn =
1
c

√
(λ2 − µ2)(λ2 − ν2)dα, (3)

dS =
1
c2

(µ2 − ν2)
√

(λ2 − µ2)(λ2 − ν2)dβdγ, (4)

dv =
1
c3

(λ2 − µ2)(λ2 − ν2)(µ2 − ν2)dαdβdγ. (5)

For the integral of any function of α, β, and γ over the ellipsoid α = α0, we
shall have
w
F (α, β, γ)dS =

1
c2

2K′w

0

dβ

4Kw

0

F (α0, β, γ)(µ2 − ν2)
√

(λ2 − µ2)(λ2 − ν2)dγ. (6)

140. If we make use of the formula (2) Art. 92
w

(UDnV − V DnU)dS = 0 (1)

and take as our closed surface any given ellipsoid, we can get a very important
result.

If U = Epm(λ)Epm(µ)Epm(ν) and V = Eqn(λ)Eqn(µ)Eqn(ν)

then ∇2U = ∇2V = 0.

DnU = DαUDnα = Epm(µ)Epm(ν)
dEpm(λ)
dα

c√
(λ2 − µ2)(λ2 − ν2)

,

and DnV = DαV Dnα = Eqn(µ)Eqn(ν)
dEqn(λ)
dα

c√
(λ2 − µ2)(λ2 − ν2)

,

UDnV − V DnU = Epm(µ)Epm(ν)Eqn(µ)Eqn(ν)(
Epm(λ)

dEqn(λ)
dα

− Eqn(λ)
dEpm(λ)
dα

)
c√

(λ2 − µ2)(λ2 − ν2)
.

Integrating UDnV − V DnU over the whole ellipsoid, and writing the result
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equal to zero, we have

1
c

2K′w

0

dβ

4Kw

0

Epm(µ)Epm(ν)Eqn(µ)Eqn(ν)[
Epm(λ)

dEqn(λ)
dα

− Eqn(λ)
dEpm(λ)
dα

]
(µ2 − ν2)dγ = 0.

Hence
2K′w

0

dβ

4Kw

0

Epm(µ)Epm(ν)Eqn(µ)Eqn(ν)(µ2 − ν2)dγ = 0 (2)

unless Epm(λ)
dEqn(λ)
dα

− Eqn(λ)
dEpm(λ)
dα

= 0. (3)

But as our ellipsoid may be taken at pleasure, λ and α are unrestricted, and
if (3) is true it must be true identically.

If we divide (3) by [Epm(λ)]2 it becomes

d

dα

[
Eqn(λ)
Epm(λ)

]
= 0 and

Eqn(λ)
Epm(λ)

= a constant;

and this obviously cannot be true unless n = m and q = p.

EXAMPLES.

1. Show that it follows from (2) Art. 140 that

K′w

−K′
dβ

Kw

−K

Epm(µ)Epm(ν)Eqn(µ)Eqn(ν)(µ2 − ν2)dγ = 0.

Suggestion:

2K′w

0

Epm(µ)Eqn(µ)(µ2 − ν2)dβ =
K′w

0

Epm(µ)Eqn(µ)(µ2 − ν2)dβ

+
2K′w

K′

Epm(µ)Eqn(µ)(µ2 − ν2)dβ.

If in the last integral we replace β by β + 2K ′ it becomes

±
0w

−K′
Epm(µ)Eqn(µ)(µ2 − ν2)dβ

v. Arts. 136 and 139 and Int. Cal. Art. 196.
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2. Show that

2K′w

0

dβ

4Kw

0

[Epm(µ)Epm(ν)]2(µ2 − ν2)dγ = 8
K′w

0

dβ

Kw

0

[Epm(µ)Epm(ν)]2(µ2 − ν2)dγ.

141. We can now solve the problem of finding the value of V at any point
in space when it is given at all the points on the surface of the ellipsoid α = α0.

We have first to develop in Ellipsoidal Harmonics a function of µ and ν or
rather of α and β given at all points on the surface of the ellipsoid in question;
and this is now easily accomplished by our usual method, which leads us to the
result

f(α0, β, γ) =
m=∞∑
m=0

k=2m+1∑
k=1

Am,pkE
pk
m (µ)Epkm (ν), (1)

where Am,pk =

2K′w

0

dβ

4Kw

0

f(α0, β, γ)Epkm (µ)Epkm (ν)(µ2 − ν2)dγ

8
K′w

0

dβ

Kw

0

[Epkm (µ)Epkm (ν)]2(µ2 − ν2)dγ

. (2)

Our final solution is

V =
m=∞∑
m=0

k=2m+1∑
k=1

Am,pk
Epkm (λ)
Epkm (λ0)

Epkm (µ)Epkm (ν) (3)

at an internal point;

V =
m=∞∑
m=0

k=2m+1∑
k=1

Am,pk
F pkm (λ)
F pkm (λ0)

Epkm (µ)Epkm (ν) (4)

at an external point.
Lamé has proved rather ingeniously that

K′w

0

dβ

Kw

0

[Epkm (µ)Epkm (ν)]2(µ2 − ν2)dγ

can always be found and that it is equal to
π

2
multiplied by a rational integral

function of the coefficients of Epkm (x) and of c2 and
(b
c

)2

.
Of course the labor of obtaining even a few terms of the development of a

function that is in the least complicated is enormous.
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142. If in Laplace’s Equation (8) Art. 136 we let V = Epm(λ)U supposing

U to be a function of β and γ only, we get after replacing
1

Epm(λ)
d2Epm(λ)
dα2

by

its value m(m+ 1)λ2 − (b2 + c2)p [v. (2) Art. 137]

(λ2− ν2)D2
βU + (λ2−µ2)D2

γU + (µ2− ν2)[m(m+ 1)λ2− (b2 + c2)p]U = 0; (1)

and since by hypothesis U is independent of λ, the coefficient of λ2 in (1) must
vanish. Hence

D2
βU +D2

γU + (µ2 − ν2)m(m+ 1)U = 0. (2)

Of course U = Epm(µ)Epm(ν) will satisfy (2).

EXAMPLES.

1. Substitute U = Epm(µ)Epm(ν) in (2) Art. 142 and by the aid of (2)
Art. 137 show that the equation (2) Art. 142 is satisfied.

2. Obtain (2) Art. 140 directly from (2) Art. 142.

3. Conical Coördinates. Consider the system of coördinates defined by the
equations

x2 + y2 + z2 = r2

x2

µ2
+

y2

µ2 − b2
+

z2

µ2 − c2
= 0

x2

ν2
+

y2

ν2 − b2
+

z2

ν2 − c2
= 0


(1)

where c2 > µ2 > b2 > ν2.
Show that

x2 =
r2µ2ν2

b2c2
, y2 =

r2(µ2 − b2)(ν2 − b2)
b2(b2 − c2)

, z2 =
r2(µ2 − c2)(ν2 − c2)

c2(c2 − b2)
;

h2
1 =

(µ2 − b2)(c2 − µ2)
r2(µ2 − ν2)

, h2
2 =

(b2 − ν2)(c2 − ν2)
r2(µ2 − ν2)

, h2
3 = 1.

Laplace’s Equation is

D2
αV +D2

βV + (µ2 − ν2)Dr(r2DrV ) = 0 (2)

where α =
µw

b

dµ√
(µ2 − b2)(c2 − µ2)

and β =
νw

0

dν√
(b2 − ν2)(c2 − ν2)

,
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If V = U.R (2) breaks up into

d

dr

(
r2 dR

dr

)
= m(m+ 1)R, (3)

D2
αU +D2

βU +m(m+ 1)(µ2 − ν2)U = 0. (4)

(3) gives R = Arm +Br−m−1.

(4) gives U = Epm(µ)Epm(ν) (v. Art. 142).

So that a solution of (2) is

V = ArmEpm(µ)Epm(ν).

But since (2) is Laplace’s Equation, V = ArmYm(µ, φ), if expressed in Con-
ical Coördinates, must satisfy it, consequently Epm(µ)Epm(ν) must be simply a
Spherical Harmonic of the mth degree.

Toroidal Coördinates.

143. Any pair of circles belonging to the orthogonal system obtained and
figured in Art. 46 can be represented by the equations

2ax
sinhα

=
x2 + y2 + a2

coshα
2ay
sinβ

=
x2 + y2 − a2

cosβ

 (1)

if we take 2a instead of 2 as the distance between the points common to the
second set of circles.

If we rotate the system about the axis of y we get a set of spheres and a set of
anchor rings which cut orthogonally. These and a set of planes through the axis
of revolution will form an orthogonal system of surfaces, and the parameters
corresponding to them may be taken as a set of curvilinear coördinates and
may be called Toroidal Coördinates.

If we take the axis of the system as the axis of Z, the equations of a set of
the surfaces may be written

4a2(x2 + y2)
sinh2 α

=
[x2 + y2 + z2 + a2]2

cosh2 α
2az
sinβ

=
x2 + y2 + z2 − a2

cosβ
y = x tan γ


(2)

α, β, and γ being regarded as the coördinates of a point of intersection of
the three surfaces.
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Finding Laplace’s Equation in the usual manner we get

x =
a sinhα cos γ
coshα∓ cosβ

, y =
a sinhα sin γ

coshα∓ cosβ
, z =

a sinβ
coshα∓ cosβ

,

r =
√
x2 + y2 =

a sinhα
coshα∓ cosβ

, a+ z ctnβ =
a coshα

coshα∓ cosβ
;

h1 =
coshα∓ cosβ

a
, h2 =

coshα∓ cosβ
a

, h3 =
coshα∓ cosβ

a sinhα
;

and Laplace’s Equation becomes

Dα

[
a sinhα

coshα∓ cosβ
DαV

]
+Dβ

[
a sinhα

coshα∓ cosβ
DβV

]

+Dγ

[
a

sinhα(coshα∓ cosβ)
DγV

]
= 0, (1)

or Dα(rDαV ) +Dβ(rDβV ) +
1

sinh2 α
rD2

γV = 0. (2)

We cannot proceed further by our usual method, for the assumption that
V is a function of α alone, or that V is a function of β alone, proves to be
inadmissible. Indeed, not only are α, β, and γ not thermometric parameters (v.
Art. 133), but no thermometric parameters exist, and no possible distribution
can make our anchor rings or our spheres a set of equipotential surfaces.

We can, however, simplify (2). It can be written

D2
α(V
√
r) +D2

β(V
√
r) +

1
sinh2 α

D2
γ(V
√
r)− V (D2

α

√
r +D2

β

√
r) = 0. (3)

D2
α

√
r +D2

β

√
r proves equal to −

√
r

4 sinh2 α
; hence if U = V

√
r (3) becomes

sinh2 α(D2
αU +D2

βU) +D2
γU + 1

4U = 0, (4)

for which particular solutions can readily be found by our usual process.
(4) can be broken up into the three equations

d2N

dγ2
+ (m+ 1

2 )2N = 0 (5)

d2M

dβ2
+ n2M = 0 (6)

sinh2 α
d2L

dα2
− [m(m+ 1) + n2 sinh2 α]L = 0. (7)

N = A cos(m+ 1
2 )γ +B sin(m+ 1

2 )γ

M = A1 cosnβ +B1 sinnβ.
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If we introduce into (7) x = ctnhα it becomes

(1− x2)
d2L

dx2
− 2x

dL

dx
+
[
m(m+ 1)− n2

1− x2

]
L = 0,

a solution of which is

L = Pnm(x) = (1− x2)
n
2
dnPm(x)
dxn

(v. Art. 102).

It is to be noted that since ctnhα is greater than 1

Pnm(ctnhα) = i
n
2 cschn α

dnPm(ctnhα)
(d ctnhα)n

.

The constant coefficient i
n
2 can be rejected and we get

U = [A cos(m+ 1
2 )γ+B sin(m+ 1

2 )γ](A1 cosnβ+B1 sinnβ) cschn α
dnPm(ctnhα)

(d ctnhα)n

as a particular solution of (4).

1
i
n
2
Pnm(ctnhα) = cschn α

dnPm(ctnhα)
(d ctnhα)n

has been called a Toroidal Harmonic.

EXAMPLES.

1. Given the value of the potential function at all points on the surface of
an anchor ring; find its value at any point within the ring.

Suggestion: If V = f(β, γ) when α = α0, the function to be developed is

√
r.f(β, γ) i.e.

[
a sinhα0

coshα0 ∓ cosβ

] 1
2

f(β, γ)

and the development will be in a double Fourier’s Series (v. Art. 71).

2. Show that if we let α range from 0 to ∞, β from −π to π, and γ from 0
to 2π, each of the double signs on page 264 may be replaced by the minus sign
without loss of generality.
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CHAPTER IX.1

HISTORICAL SUMMARY.

The method of development in series which has enabled us in the preceding
chapters to solve problems in various branches of mathematical physics, had its
origin, as might have been expected, in the theory of the musical vibrations of a
stretched string. It was in the year 17532 that Daniel Bernoulli enunciated the
principle of the coexistence of small oscillations, which, in connection with Tay-
lor’s and John Bernoulli’s theory of the vibrating string, led him to believe that
the general solution of this problem could be put in the form of a trigonometric
series. This principle also led him and Euler to treat in a similar manner the
problems of the vibration of a column of air and of an elastic rod. The problem
of the vibration of a heavy string suspended from one end was also treated in
the same manner by these mathematicians and deserves special mention here
as in it Bessel’s functions of the zeroth order appear for the first time.3 In none
of these cases, however, was any method given for determining the coefficients
of the series.

This last remark also applies to the more complicated problems of the vi-
bration of rectangular and circular membranes, which were discussed by Euler4

in 1764, and in the last of which the general Bessel’s functions of integral orders
occur.

It is in problems connected with astronomy that the first completely suc-
cessful application of the method here considered occurs. Legendre in a paper
published in the Mémoires des Savants Étrangers for 1785, first introduced the
zonal harmonics Pm and applied them to the determination of the attraction
of solids of revolution. He was followed by Laplace, who in one of the most
remarkable memoirs ever written5 determined the potential of a solid differing
but little from a sphere by means of the development according to the spherical
harmonics Ym.

Very closely related to this problem is Gauss’s celebrated treatment of the
theory of terrestrial magnetism,6 which we will for that reason mention here,
although it was not published until more than half a century later. This paper
is particularly noteworthy as it contains a numerical application of the method
on a larger scale than has ever been attempted before or since.

After the researches of Legendre and Laplace there was a pause of a quarter
of a century until in 1812 Fourier’s extensive memoir: Théorie du mouvement

1See preface.
2See two articles by Bernoulli and one by Euler in the Memoirs of the Academy of Berlin

for this year.
3See the Transactions of the Academy of St. Petersburg for 1732-33, 1734 and 1781.
4Transactions of the Academy of St. Petersburg.
5“Théorie des attractions des sphéröıdes et de la figure des Planètes” Mémoires de

l’académie des sciences 1782. This article, although bearing an earlier date than that of Leg-
endre, was really inspired by it. It is here that “Laplace’s equation” first appears, occurring,
however, only in polar coördinates.

6Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838. Leipzig, 1839.
Reprinted in Gauss’s collected works, Vol. V., p. 121.
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de la chaleur dans les corps solides was crowned by the French Academy. Al-
though not printed until the years 1824-26,7 the manuscript of this work was
in the meantime accessible to the other French mathematicians presently to be
mentioned. The first part of this memoir, which was reproduced with but few
alterations in the Théorie analytique de la chaleur (1822), contains a treatment
of the following problems and of practically all of their special cases:

(a) The one dimensional flow of heat. (b) The two dimensional flow of
heat in a rectangle. (c) The three dimensional flow of heat in a rectangular
parallelopiped. (d) The flow of heat in a sphere when the temperature depends
only on the distance from the centre. (e) The flow of heat in a right circular
cylinder when the temperature depends only on the distance from the axis. In
these problems not merely the simpler boundary conditions are considered but
also the question of radiation into an atmosphere. In special cases of the first
three problems just mentioned (when one or more dimensions become infinite)
the series degenerate into “Fourier’s integrals.”

More important even than any of these special problems is the great advance
which Fourier caused the theory of trigonometric series to make. In a posthu-
mous paper Euler had given the formulae for determining the coefficients,8 but
Fourier was the first to assert and to attempt to prove that any function, even
though for different values of the argument it is expressed by different analytical
formulae, can be developed in such a series. The fact that the real importance of
trigonometric series was thus for the first time shown justifies us in associating
Fourier’s name with them, although, as we have seen, they were known long
before his day.

Fourier’s results were extended by Laplace in 18209 to the general (unsym-
metrical) case of the flow of heat in a sphere, and by Poisson10 (1821) to the
unsymmetrical flow of heat in a cylinder.

In 1835 Green published a paper11 in which the method we are considering
is employed to determine the potential of a heterogeneous ellipsoid. This paper,
in which the analysis is performed at once for space of n dimensions, anticipates
much that was subsequently done by others, but has failed to exert an influence
proportional to its importance.

At about this time Lamé began a series of publications which have connected
his name inseparably with the problem of the permanent state of temperature
of an ellipsoid. In the first of these12 the equation ∇2V = 0 is transformed
to ellipsoidal coördinates and is then broken up into three ordinary differential

7Mémoires de l’académie des sciences for 1819-20 and 1821-22.
8Lagrange had practically determined these coefficients long before but failed to notice

what he had got.
9Connaissance des Temps pour l’an 1823.

10Journal de l’École Polytechnique, 19e Cahier. Although the final forms to which Poisson
reduces his results are similar to Fourier’s, his methods are very different.

11“On the determination of the exterior and interior attraction of ellipsoids of variable
densities.” Transactions of the Cambridge Philosophical Society.

12Mémoires des Savants Étrangers, Vol. V. Although the volume is dated 1838 this paper
(which was reprinted in Liouville’s Journal, 1837) must have appeared at least as early as
1835.
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equations. The rest of the solution, however, is hardly touched upon. Lamé’s
most important work on this subject13 was published in Liouville’s Journal in
1839, and in it the complete solution of the problem is given. Lamé clearly
shows in this paper how he arrived at his solution, by considering first the
simpler case of a sphere where, instead of the polar coördinates θ and φ, the
parameters of two families of confocal cones of the second degree are used as
coördinates. This system of curvilinear coördinates, which, when applied to
the complete sphere, merely gives the old results of Laplace in a new form, is
barely mentioned in Lamé’s later publications. In the same volume of Liouville’s
Journal Lamé published a second paper in which he applies his results to the
special cases of ellipsoids of revolution.

These two papers form the starting-point for a series of articles on the same
subject by Heine and Liouville. Heine in his doctor dissertation14 (1842) deter-
mined the potential not merely for the interior of an ellipsoid of revolution when
the value of the potential is given on the surface, but also for the exterior of
such an ellipsoid and for the shell between two confocal ellipsoids of revolution.
Even in the first of these problems, which is equivalent to that of Lamé, he sim-
plified Lamé’s solution materially by showing that the functions used may be
reduced to spherical harmonics, while in the other two problems he introduced
spherical harmonics of the second kind, which were then new. Shortly after-
wards15 Heine and Liouville published simultaneously two papers in which they
arrived independently of each other at about the same results. In each of these
papers attention is called to the fact that the product of two Lamé’s functions
is a spherical harmonic, and this fact is made use of to throw Lamé’s solution
of the problem of the permanent state of temperatures of an ellipsoid into a
more elementary form. Besides this the second solution of Lamé’s equation is
introduced for the sake of solving the potential problem for the exterior of the
ellipsoid.

In thus following up the theory of heat and the related potential problems,
we have lost sight of the question of small vibrations, to which during the early
part of the century a great deal of attention had been devoted by Poisson, who
frequently made use of the method of development in series. In his memoirs16

most of the problems left unfinished by Bernoulli and Euler are thoroughly
treated, as well as various slight modifications of them. When, however, he
attacked the problem of the vibration of an elastic plate he was unable to make
much progress, owing in part to the erroneous form of his boundary conditions.

13“Sur l’équilibre des Températures dans un ellipsöıde à trois axes inégaux.” An article by
the same author on the two dimensional potential will be found in Vol. I. of this Journal.

14Reprinted in Crelle’s Journal, Vol. 26 (1843).
In the same Journal for 1847 F. Neumann discussed the related problem of the magnetisation
of a soft iron ellipsoid of revolution.

15Heine: Crelle’s Journal, Vol. 29, 1845. Liouville: Liouville’s Journal, Vol. X., 1845, and
Vol. XI., 1846. For a treatment of the problem of the potential of an ellipsoidal shell by means

of a development of
1

r
in terms of Lamé’s functions, see a paper by Heine in Crelle’s Journal,

Vol. 42, 1851.
16See especially the one in the Mémoires de l’académie des sciences, Vol. VIII., 1829.
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He was, nevertheless, able to solve the problem of the symmetrical vibration
of a free circular plate. The complete theory of the vibration of a free circular
plate was first given by Kirchhoff.17

Passing now to a new subject, the theory of the equilibrium of an elastic
spherical shell, we find a solution by Lamé in Liouville’s Journal for 1854, and
by Sir William Thomson (1862) in the Philosophical Transactions for 1863. Both
of these papers consist of an application of the spherical harmonic analysis to
this rather complicated problem. Thomson, however, considers besides Lamé’s
problem certain related questions and the form of his analysis is very different
from Lamé’s, being of the same nature as that used in the Appendix B of his
Natural Philosophy of which we shall have to speak presently. These investi-
gations form the starting point for a number of recent memoirs among which
those of G. H. Darwin on cosmographical questions deserve special mention.

Closely related to this last mentioned problem is the theory of the small
vibrations of an elastic sphere. While the simplest case of this problem was
treated by Poisson in the memoir referred to above, the general solution has been
only recently obtained by Jaerisch (1879)18 and Lamb (1882).19 The functions
involved are the same as those which occur in the problem of the non-stationary
flow of heat in a sphere as solved by Laplace.

The Appendix B of Thomson and Tait’s Natural Philosophy,20 to which we
have already referred, deserves to be regarded as one of the most important
contributions to the general theory. The way in which spherical harmonics are
introduced (as homogeneous functions of the rectangular coördinates) was then
new21 and the solution of the potential problem for a variety of new solids was
indicated; viz., for solids whose boundaries consist of concentric spheres, cones
of revolution, and planes. We shall have more to say presently concerning the
method employed for the solution of these problems.

Although connected only indirectly with the theory we are discussing, it will
be well to mention at this point the method of electrical images which is also due
to Sir William Thomson (1845). This method enables us to solve many potential
problems for the inverse of any solid when once we have solved it for the solid
itself. By means of this method most of the solutions of potential problems
obtained by our method may be applied at once with very little modification
to systems of curvilinear coördinates derived by inversion from those we have
used. It will not be necessary to mention separately problems of this sort, as it
is clearly immaterial whether they be solved directly or by means of the method
of inversion.22

Returning now to the Continent, we find as the next important question
17Crelle’s Journal, Vol. 40, 1850.
18Crelle’s Journal, Vol. 88.
19Proc. Lond. Math. Soc.
20First edition, 1867. This appendix was evidently written as early as 1862, as Thomson

refers to it in the memoir quoted above.
21The same method was used at about the same time by Clebsch.
22A case in point would be the potential problem for the shell between two non-intersecting

eccentric spheres, since these spheres can be inverted into concentric spheres. This problem
was treated directly by C. Neumann in a monograph published in Halle in 1862.
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taken up the problem of the potential of an anchor ring. The first publication
on this subject is a monograph by C. Neumann23 (1864), but in Riemann’s
posthumous papers which were not published until 1876, ten years after his
death, will be found a short fragment on this subject, which (cf. the last page of
Hattendorf’s edition of Riemann’s lectures: “Partielle Differentialgleichungen”)
would appear to date back to the winter 1860-61. This fragment is of peculiar
interest, as the opening paragraphs clearly show that Riemann had in mind an
extended article on the fundamental principles of our subject.

We will next mention two papers by Mehler in which the functions known
as “conal harmonics,” which had already been introduced by Thomson in the
Appendix B above mentioned, were applied to the solution of two problems in
electrostatics. The first of these papers24 (1868) deals with the solid bounded
by two intersecting spheres, while in the second25 (1870) the infinite cone of
revolution is treated. Both of these problems are essentially different from those
discussed in the “Appendix B,” inasmuch as the infinite series which we usually
have degenerate in these cases into definite integrals, just as they do in some
simpler cases treated by Fourier. The later of the two papers just quoted also
contains valuable information concerning the nature of the solution of similar
problems for the hyperboloids and paraboloids of revolution. The solutions of
these problems are not, however, given.

It remains, in order to close the history of this part of the subject, to mention
a number of memoirs which although treating entirely new problems are of far
less importance than most of those considered up to this point, partly because
the solution is not brought to a point where it can be of much immediate use,
and partly because most of the methods employed are such as could not fail to
present themselves to any one attacking these problems.

Of these the first is a paper by Mathieu26 on the vibration of an elliptic
membrane (1868), in which the functions of the elliptic cylinder occur for the
first time.

This was followed in the same year by a paper on closely allied subjects
by H. Weber,27 in which not merely the case of the complete ellipse is briefly
considered, but also that in which the boundary consists of two arcs of confocal
ellipses and two arcs of hyperbolas confocal with them. The special case in
which the ellipses and hyperbolas become confocal parabolas is also considered,
whereby the functions of the parabolic cylinder are for the first time introduced.

In Mathieu’s “Cours de physique mathématique” (1873) the problem of the
non-stationary flow of heat in an ellipsoid is touched upon, and an elaborate
though not very satisfactory treatment of the special cases where we have ellip-
soids of revolution is given. New functions appear in all of these problems.

Of late years C. Baer has supplied a number of missing links in the chain
23“Theorie der Elektricitäts- und Wärme-Vertheilung in einem Ringe.” Halle.
24Crelle’s Journal, Vol. 68, 1868.
25Jahresbericht des Gymnasiums zu Elbing.
26Liouville’s Journal, Vol. XIII.
27“Ueber die Integration der partiellen Differentialgleichung δ2u

δx2 + δ2u
δy2

+ k2u = 0.” Math.

Ann., Vol. I. No physical problem is mentioned in this paper.
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of problems here considered by treating in succession the potential problem
for the paraboloid of revolution,28 the parabolic cylinder29 and the general
paraboloid.30 In the first of these problems Bessel’s functions occur, as had
already been stated by Mehler, while in the last we find the functions of the
elliptic cylinder. For each of the three systems of coördinates employed the same
author also touches upon the more general problem of the non-stationary flow
of heat, in which new functions occur.

Except in the case of the anchor ring we have found so far only such solids
treated by our method as are bounded by surfaces of the first or second degree.
Wangerin31 (1875-76) considered in connection with the theory of the potential,
more general systems of curvilinear coördinates than had previously been used in
physical questions, namely, cyclidic coördinates.32 He showed, however, merely
how to break up Laplace’s equation into three ordinary differential equations.33

An important branch of our theory which we have not yet touched upon
dates back to the year 1836, when Sturm published a series of fundamentally
important papers in the first two volumes of Liouville’s Journal. The physical
question which lies at the basis of these papers is the problem of the flow of heat
in a heterogeneous bar.34 The method here employed depends upon the fact
that the functions which occur are characterized by the number of times they
vanish in a certain interval. This same idea reappears in Thomson and Tait’s
Appendix B already referred to, but first finds its full expression in this more
general field of the three dimensional potential in an article by Klein: “Ueber
Körper welche von confocalen Flächen zweiten Grades begrenzt sind”35 (1881).
Still more recently (1889-90) Klein has in his lectures extended this theory to
the treatment of solids bounded by six confocal cyclids, and has indicated how
all the potential problems heretofore treated by our method are special cases of
this one.36

Of late years, especially since the year 1880, the younger English mathemati-
cians have done a vast amount of work in the theory we are here considering.
Although much of this work is of great value, hardly any of it can be regarded
as being a real development of the method; it is rather an application of it to

28“Ueber das Gleichgewicht und die Bewegung der Wärme in einem Rotationsparaboloid.”
Dissertation, Halle, 1881.

29“Die Funktion des parabolischen Cylinders,” Gymnasialprogramm Cüstrin, 1883.
30“Parabolische Coordinaten,” Frankfurt, 1888. See also a paper by Greenhill in the Proc.

Lond. Math. Soc., Vol. XIX., 1889 (read Dec. 8, 1887). Also a posthumous paper by Lamé in
Liouville’s Journal for 1874, Vol. XIX.

31Preisschriften der Jablanowski’schen Gesellschaft, No. XVIII., and Crelle’s Journal, Vol.
82. See also, concerning a still further extension, the Berliner Monatsberichten for 1878.

32Cyclids are a kind of surface of the fourth order (see Salmon’s Geom. of three Dimensions,
p. 527). In his first memoir Wangerin considers only cyclids of revolution.

33See also a paper by this author in Grünert’s Archiv for 1873, where the problem of the
equilibrium of elastic solids of revolution is treated.

34The similar problem of the vibration of a heterogeneous string under the action of an
external force was treated by Maggi (Giornale di Matematiche, 1880). Several special cases
are also considered here in detail.

35Math. Ann., 18.
36For an exposition of this theory see the treatise: Ueber die Reihenentwickelungen der

Potentialtheorie, Leipsic, Teubner, 1894, by the writer of the present chapter.
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a great variety of problems. We must therefore content ourselves with giving a
mere list of a few of the more important of these papers.

Niven: On the Conduction of Heat in Ellipsoids of Revolution. Phil. Trans.,
1880.

Niven: On the Induction of Electric Currents in Infinite Plates and Spherical
Shells. Phil. Trans., 1881.

Hicks: On Toroidal Functions. Phil. Trans., 1881.
Hicks: On the Steady Motion and Small Vibrations of a Hollow Vortex.

Phil. Trans., 1884, 1885.
Lamb: On Ellipsoidal Current Sheets. Phil. Trans., 1887.
Chree: The Equations of an Isotropic Elastic Solid in Polar and Cylindrical

Coördinates, their Solution and Application. Camb. Phil. Soc. Trans., XIV.,
1889.

Hobson: On a Class of Spherical Harmonics of Complex Degree with Appli-
cations to Physical Problems. Camb. Phil. Soc. Trans., XIV., 1889.

Chree: On some Compound Vibrating Systems. Camb. Phil. Soc. Trans.,
XV., 1891.

Niven: On Ellipsoidal Harmonics. Phil. Trans., 1892.
The historical sketch we have just given would naturally require as a sup-

plement some account of the work that has been done on the question of the
convergence of the various series which occur. This, however, would carry us
too far, and we will content ourselves with mentioning the two fundamental
memoirs by Dirichlet in Crelle’s Journal, one in 1829 on Fourier’s series, and
one, which has been criticised to some extent by subsequent mathematicians,
in 1837 on Laplace’s spherical harmonic development.

Another subject which naturally presents itself here is the theory of the
various new functions we have met. Those properties of these functions, how-
ever, which the physicist needs have usually been investigated by the physicists
themselves in the papers mentioned above; while any thorough account of the
development of the theory of these functions would lead us into the vast region
of the modern theory of linear differential equations.

We will therefore close by merely giving a list of books which will be found
useful by those wishing to continue their study of the subject further.

We begin with the books relating directly to physical questions:
Fourier: Théorie Analytique de la Chaleur, 1822.
Lamé: Leçons sur les Functions inverses des Transcendantes et les Surfaces

isothermes, 1857.
Lamé: Leçons sur les Coordonnées Curvilignes et leurs diverses Applications,

1859.
Mathieu: Cours de Physique Mathématique, 1873.
Riemann: Partielle Differentialgleichungen, und deren Anwendung auf phys-

ikalische Fragen (edited by Hattendorf), third edition. 1882.
F. Neumann: Theorie des Potentials und der Kugelfunktionen (edited by C.

Neumann), 1887.
Thomson and Tait: Natural Philosophy, second edition, 1879.
Rayleigh: Theory of Sound, 1877.
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Basset: Hydrodynamics, 1888.
Love: Theory of Elasticity, 1892.
Heine: Handbuch der Kugelfunktionen (second edition), 1878-81.
Ferrers: Spherical Harmonics, 1881.
Haentzschel: Reduction der Potentialgleichung auf gewöhnliche Differential-

gleichungen, 1893.
These last three books would also belong in the following list of books relat-

ing to the theory of the various functions we use:
Todhunter: The Functions of Laplace, Lamé and Bessel, 1875.
Lommel: Studien über die Bessel’schen Funktionen, 1868.
F. Neumann: Beiträge zur Theorie der Kugelfunktionen, 1878.
And finally concerning the question of convergence:
C. Neumann: Über die nach Kreis-, Kugel- und Cylinder-Functionen fort-

schreitenden Entwickelungen, 1881.
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APPENDIX.

TABLES.

Table I., a table of Surface Zonal Harmonics (Legendrians), gives the values
of the first seven Harmonics P1(cos θ), P2(cos θ), · · ·P7(cos θ) for the argument
θ in degrees. It is taken from the Philosophical Magazine for December, 1891,
and was computed by Messrs. C. E. Holland, P. R. James, and C. G. Lamb,
under the direction of Professor John Perry.

Table II., a table of Surface Zonal Harmonics (Legendrians), gives the values
of the first seven Harmonics P1(x), P2(x), · · ·P7(x) for the argument x. It is
reduced from the Tables of Legendrian Functions computed under the direction
of Dr. J. W. L. Glaisher, and published in the Report of the British Association
for the Advancement of Science for the year 1879.

Table III., the table of Hyperbolic Functions, gives the values of ex, e−x,
sinhx, coshx, and gdx (Gudermannian of x) for values of x from 0.00 to 1.00;
and the values of log sinhx and log coshx for values of x from 1.00 to 10.0. The
values of gdx, log sinhx, and log coshx are taken from the Mathematical Tables
prepared by Professor J. M. Peirce (Boston: Ginn & Co.).

The log sinhx and log coshx for values of x between 0.00 and 1.00 can be
obtained from the values given for the Gudermannian of x in the table by the
aid of the relations

log sinhx = log tan(gdx) log coshx = log sec(gdx).

Table IV. gives the first twelve roots of J0(x) = 0 and J1(x) = 0 each divided
by π. The table is taken from Lord Rayleigh’s Sound, Vol. I., page 274, and is
due to Professor Stokes, Camb. Phil. Trans., Vol. IX., page 186.

Table V. gives the first nine roots of J0(x) = 0, J1(x) = 0, · · · J5(x) = 0. The
table is taken from Rayleigh’s Sound, Vol. I., page 274, and is due to Professor
J. Bourget, Ann. de l’Ecole Normale, T. III., 1866, page 82.

Table VI., the table of Bessel’s Functions, gives the values of the Bessel’s
Functions J0(x) and J1(x) for the argument x from x = 0 to x = 15. It is
taken from Rayleigh’s Sound, Vol. I., page 265, and from Lommel’s Bessel’sche
Functionen.
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TABLE I. — Surface Zonal Harmonics

θ P1(cos θ) P2(cos θ) P3(cos θ) P4(cos θ) P5(cos θ) P6(cos θ) P7(cos θ)

0◦ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 .9998 .9995 .9991 .9985 .9977 .9967 .9955
2 .9994 .9982 .9963 .9939 .9909 .9872 .9829
3 .9986 .9959 .9918 .9863 .9795 .9713 .9617
4 .9976 .9927 .9854 .9758 .9638 .9495 .9329

5 .9962 .9886 .9773 .9623 .9437 .9216 .8961
6 .9945 .9836 .9674 .9459 .9194 .8881 .8522
7 .9925 .9777 .9557 .9267 .8911 .8476 .7986
8 .9903 .9709 .9423 .9048 .8589 .8053 .7448
9 .9877 .9633 .9273 .8803 .8232 .7571 .6831

10 .9848 .9548 .9106 .8532 .7840 .7045 .6164
11 .9816 .9454 .8923 .8238 .7417 .6483 .5461
12 .9781 .9352 .8724 .7920 .6966 .5892 .4732
13 .9744 .9241 .8511 .7582 .6489 .5273 .3940
14 .9703 .9122 .8283 .7224 .5990 .4635 .3219

15 .9659 .8995 .8042 .6847 .5471 .3982 .2454
16 .9613 .8860 .7787 .6454 .4937 .3322 .1699
17 .9563 .8718 .7519 .6046 .4391 .2660 .0961
18 .9511 .8568 .7240 .5624 .3836 .2002 .0289
19 .9455 .8410 .6950 .5192 .3276 .1347 −.0443

20 .9397 .8245 .6649 .4750 .2715 .0719 −.1072
21 .9336 .8074 .6338 .4300 .2156 .0107 −.1662
22 .9272 .7895 .6019 .3845 .1602 −.0481 −.2201
23 .9205 .7710 .5692 .3386 .1057 −.1038 −.2681
24 .9135 .7518 .5357 .2926 .0525 −.1559 −.3095

25 .9063 .7321 .5016 .2465 .0009 −.2053 −.3463
26 .8988 .7117 .4670 .2007 −.0489 −.2478 −.3717
27 .8910 .6908 .4319 .1553 −.0964 −.2869 −.3921
28 .8829 .6694 .3964 .1105 −.1415 −.3211 −.4052
29 .8746 .6474 .3607 .0665 −.1839 −.3503 −.4114

30 .8660 .6250 .3248 .0234 −.2233 −.3740 −.4101
31 .8572 .6021 .2887 −.0185 −.2595 −.3924 −.4022
32 .8480 .5788 .2527 −.0591 −.2923 −.4052 −.3876
33 .8387 .5551 .2167 −.0982 −.3216 −.4126 −.3670
34 .8290 .5310 .1809 −.1357 −.3473 −.4148 −.3409

35 .8192 .5065 .1454 −.1714 −.3691 −.4115 −.3096
36 .8090 .4818 .1102 −.2052 −.3871 −.4031 −.2738
37 .7986 .4567 .0755 −.2370 −.4011 −.3898 −.2343
38 .7880 .4314 .0413 −.2666 −.4112 −.3719 −.1918
39 .7771 .4059 .0077 −.2940 −.4174 −.3497 −.1469

40 .7660 .3802 −.0252 −.3190 −.4197 −.3234 −.1003
41 .7547 .3544 −.0574 −.3416 −.4181 −.2938 −.0534
42 .7431 .3284 −.0887 −.3616 −.4128 −.2611 −.0065
43 .7314 .3023 −.1191 −.3791 −.4038 −.2255 .0398
44 .7193 .2762 −.1485 −.3940 −.3914 −.1878 .0846

45◦ .7071 .2500 −.1768 −.4062 −.3757 −.1485 .1270
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TABLE I. — Surface Zonal Harmonics

θ P1(cos θ) P2(cos θ) P3(cos θ) P4(cos θ) P5(cos θ) P6(cos θ) P7(cos θ)

45◦ .7071 .2500 −.1768 −.4062 −.3757 −.1485 .1270
46 .6947 .2238 −.2040 −.4158 −.3568 −.1079 .1666
47 .6820 .1977 −.2300 −.4252 −.3350 −.0645 .2054
48 .6691 .1716 −.2547 −.4270 −.3105 −.0251 .2349
49 .6561 .1456 −.2781 −.4286 −.2836 .0161 .2627

50 .6428 .1198 −.3002 −.4275 −.2545 .0563 .2854
51 .6293 .0941 −.3209 −.4239 −.2235 .0954 .3031
52 .6157 .0686 −.3401 −.4178 −.1910 .1326 .3153
53 .6018 .0433 −.3578 −.4093 −.1571 .1677 .3221
54 .5878 .0182 −.3740 −.3984 −.1223 .2002 .3234

55 .5736 −.0065 −.3886 −.3852 −.0868 .2297 .3191
56 .5592 −.0310 −.4016 −.3698 −.0510 .2559 .3095
57 .5446 −.0551 −.4131 −.3524 −.0150 .2787 .2949
58 .5299 −.0788 −.4229 −.3331 .0206 .2976 .2752
59 .5150 −.1021 −.4310 −.3119 .0557 .3125 .2511

60 .5000 −.1250 −.4375 −.2891 .0898 .3232 .2231
61 .4848 −.1474 −.4423 −.2647 .1229 .3298 .1916
62 .4695 −.1694 −.4455 −.2390 .1545 .3321 .1571
63 .4540 −.1908 −.4471 −.2121 .1844 .3302 .1203
64 .4384 −.2117 −.4470 −.1841 .2123 .3240 .0818

65 .4226 −.2321 −.4452 −.1552 .2381 .3138 .0422
66 .4067 −.2518 −.4419 −.1256 .2615 .2996 .0021
67 .3907 −.2710 −.4370 −.0955 .2824 .2819 −.0375
68 .3746 −.2896 −.4305 −.0650 .3005 .2605 −.0763
69 .3584 −.3074 −.4225 −.0344 .3158 .2361 −.1135

70 .3420 −.3245 −.4130 −.0038 .3281 .2089 −.1485
71 .3256 −.3410 −.4021 .0267 .3373 .1786 −.1811
72 .3090 −.3568 −.3898 .0568 .3434 .1472 −.2099
73 .2924 −.3718 −.3761 .0864 .3463 .1144 −.2347
74 .2756 −.3860 −.3611 .1153 .3461 .0795 −.2559

75 .2588 −.3995 −.3449 .1434 .3427 .0431 −.2730
76 .2419 −.4112 −.3275 .1705 .3362 .0076 −.2848
77 .2250 −.4241 −.3090 .1964 .3267 −.0284 −.2919
78 .2079 −.4352 −.2894 .2211 .3143 −.0644 −.2943
79 .1908 −.4454 −.2688 .2443 .2990 −.0989 −.2913

80 .1736 −.4548 −.2474 .2659 .2810 −.1321 −.2835
81 .1564 −.4633 −.2251 .2859 .2606 −.1635 −.2709
82 .1392 −.4709 −.2020 .3040 .2378 −.1926 −.2536
83 .1219 −.4777 −.1783 .3203 .2129 −.2193 −.2321
84 .1045 −.4836 −.1539 .3345 .1861 −.2431 −.2067

85 .0872 −.4886 −.1291 .3468 .1577 −.2638 −.1779
86 .0698 −.4927 −.1038 .3569 .1278 −.2811 −.1460
87 .0523 −.4959 −.0781 .3648 .0969 −.2947 −.1117
88 .0349 −.4982 −.0522 .3704 .0651 −.3045 −.0735
89 .0175 −.4995 −.0262 .3739 .0327 −.3105 −.0381

90◦ .0000 −.5000 .0000 .3750 .0000 −.3125 .0000
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TABLE II.—Surface Zonal Harmonics.

x P1(x) P2(x) P3(x) P4(x) P5(x) P6(x) P7(x)

0.00 0.0000 −.5000 0.0000 0.3750 0.0000 −.3125 0.0000
.01 .0100 −.4998 −.0150 .3746 .0187 −.3118 −.0219
.02 .0200 −.4994 −.0300 .3735 .0374 −.3099 −.0436
.03 .0300 −.4986 −.0449 .3716 .0560 −.3066 −.0651
.04 .0400 −.4976 −.0598 .3690 .0744 −.3021 −.0862

.05 .0500 −.4962 −.0747 .3657 .0927 −.2962 −.1069

.06 .0600 −.4946 −.0895 .3616 .1106 −.2891 −.1270

.07 .0700 −.4926 −.1041 .3567 .1283 −.2808 −.1464

.08 .0800 −.4904 −.1187 .3512 .1455 −.2713 −.1651

.09 .0900 −.4878 −.1332 .3449 .1624 −.2606 −.1828

.10 .1000 −.4850 −.1475 .3379 .1788 −.2488 −.1995

.11 .1100 −.4818 −.1617 .3303 .1947 −.2360 −.2151

.12 .1200 −.4784 −.1757 .3219 .2101 −.2220 −.2295

.13 .1300 −.4746 −.1895 .3129 .2248 −.2071 −.2427

.14 .1400 −.4706 −.2031 .3032 .2389 −.1913 −.2545

.15 .1500 −.4662 −.2166 .2928 .2523 −.1746 −.2649

.16 .1600 −.4616 −.2298 .2819 .2650 −.1572 −.2738

.17 .1700 −.4566 −.2427 .2703 .2769 −.1389 −.2812

.18 .1800 −.4514 −.2554 .2581 .2880 −.1201 −.2870

.19 .1900 −.4458 −.2679 .2453 .2982 −.1006 −.2911

.20 .2000 −.4400 −.2800 .2320 .3075 −.0806 −.2935

.21 .2100 −.4338 −.2918 .2181 .3159 −.0601 −.2943

.22 .2200 −.4274 −.3034 .2037 .3234 −.0394 −.2933

.23 .2300 −.4206 −.3146 .1889 .3299 −.0183 −.2906

.24 .2400 −.4136 −.3254 .1735 .3353 .0029 −.2861

.25 .2500 −.4062 −.3359 .1577 .3397 .0243 −.2799

.26 .2600 −.3986 −.3461 .1415 .3431 .0456 −.2720

.27 .2700 −.3906 −.3558 .1249 .3453 .0669 −.2625

.28 .2800 −.3824 −.3651 .1079 .3465 .0879 −.2512

.29 .2900 −.3738 −.3740 .0906 .3465 .1087 −.2384

.30 .3000 −.3650 −.3825 .0729 .3454 .1292 −.2241

.31 .3100 −.3558 −.3905 .0550 .3431 .1492 −.2082

.32 .3200 −.3464 −.3981 .0369 .3397 .1686 −.1910

.33 .3300 −.3366 −.4052 .0185 .3351 .1873 −.1724

.34 .3400 −.3266 −.4117 −.0000 .3294 .2053 −.1527

.35 .3500 −.3162 −.4178 −.0187 .3225 .2225 −.1318

.36 .3600 −.3056 −.4234 −.0375 .3144 .2388 −.1098

.37 .3700 −.2946 −.4284 −.0564 .3051 .2540 −.0870

.38 .3800 −.2834 −.4328 −.0753 .2948 .2681 −.0635

.39 .3900 −.2718 −.4367 −.0942 .2833 .2810 −.0393

.40 .4000 −.2600 −.4400 −.1130 .2706 .2926 −.0146

.41 .4100 −.2478 −.4427 −.1317 .2569 .3029 .0104

.42 .4200 −.2354 −.4448 −.1504 .2421 .3118 .0356

.43 .4300 −.2226 −.4462 −.1688 .2263 .3191 .0608

.44 .4400 −.2096 −.4470 −.1870 .2095 .3249 .0859

.45 .4500 −.1962 −.4472 −.2050 .1917 .3290 .1106

.46 .4600 −.1826 −.4467 −.2226 .1730 .3314 .1348

.47 .4700 −.1686 −.4454 −.2399 .1534 .3321 .1584

.48 .4800 −.1544 −.4435 −.2568 .1330 .3310 .1811

.49 .4900 −.1398 −.4409 −.2732 .1118 .3280 .2027

.50 .5000 −.1250 −.4375 −.2891 .0898 .3232 .2231
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TABLE II.—Surface Zonal Harmonics.

x P1(x) P2(x) P3(x) P4(x) P5(x) P6(x) P7(x)

.50 .5000 −.1250 −.4375 −.2891 .0898 .3232 .2231

.51 .5100 −.1098 −.4334 −.3044 .0673 .3166 .2422

.52 .5200 −.0944 −.4285 −.3191 .0441 .3080 .2596

.53 .5300 −.0786 −.4228 −.3332 .0204 .2975 .2753

.54 .5400 −.0626 −.4163 −.3465 −.0037 .2851 .2891

.55 .5500 −.0462 −.4091 −.3590 −.0282 .2708 .3007

.56 .5600 −.0296 −.4010 −.3707 −.0529 .2546 .3102

.57 .5700 −.0126 −.3920 −.3815 −.0779 .2366 .3172

.58 .5800 .0046 −.3822 −.3914 −.1028 .2168 .3217

.59 .5900 .0222 −.3716 −.4002 −.1278 .1953 .3235

.60 .6000 .0400 −.3600 −.4080 −.1526 .1721 .3226

.61 .6100 .0582 −.3475 −.4146 −.1772 .1473 .3188

.62 .6200 .0766 −.3342 −.4200 −.2014 .1211 .3121

.63 .6300 .0954 −.3199 −.4242 −.2251 .0935 .3023

.64 .6400 .1144 −.3046 −.4270 −.2482 .0646 .2895

.65 .6500 .1338 −.2884 −.4284 −.2705 .0347 .2737

.66 .6600 .1534 −.2713 −.4284 −.2919 .0038 .2548

.67 .6700 .1734 −.2531 −.4268 −.3122 −.0278 .2329

.68 .6800 .1936 −.2339 −.4236 −.3313 −.0601 .2081

.69 .6900 .2142 −.2137 −.4187 −.3490 −.0926 .1805

.70 .7000 .2350 −.1925 −.4121 −.3652 −.1253 .1502

.71 .7100 .2562 −.1702 −.4036 −.3796 −.1578 .1173

.72 .7200 .2776 −.1469 −.3933 −.3922 −.1899 .0822

.73 .7300 .2994 −.1225 −.3810 −.4026 −.2214 .0450

.74 .7400 .3214 −.0969 −.3666 −.4107 −.2518 .0061

.75 .7500 .3438 −.0703 −.3501 −.4164 −.2808 −.0342

.76 .7600 .3664 −.0426 −.3314 −.4193 −.3081 −.0754

.77 .7700 .3894 −.0137 −.3104 −.4193 −.3333 −.1171

.78 .7800 .4126 .0164 −.2871 −.4162 −.3559 −.1588

.79 .7900 .4362 .0476 −.2613 −.4097 −.3756 −.1999

.80 .8000 .4600 .0800 −.2330 −.3995 −.3918 −.2397

.81 .8100 .4842 .1136 −.2021 −.3855 −.4041 −.2774

.82 .8200 .5086 .1484 −.1685 −.3674 −.4119 −.3124

.83 .8300 .5334 .1845 −.1321 −.3449 −.4147 −.3437

.84 .8400 .5584 .2218 −.0928 −.3177 −.4120 −.3703

.85 .8500 .5838 .2603 −.0506 −.2857 −.4030 −.3913

.86 .8600 .6094 .3001 −.0053 −.2484 −.3872 −.4055

.87 .8700 .6354 .3413 .0431 −.2056 −.3638 −.4116

.88 .8800 .6616 .3837 .0947 −.1570 −.3322 −.4083

.89 .8900 .6882 .4274 .1496 −.1023 −.2916 −.3942

.90 .9000 .7150 .4725 .2079 −.0411 −.2412 −.3678

.91 .9100 .7422 .5189 .2698 .0268 −.1802 −.3274

.92 .9200 .7696 .5667 .3352 .1017 −.1077 −.2713

.93 .9300 .7974 .6159 .4044 .1842 −.0229 −.1975

.94 .9400 .8254 .6665 .4773 .2744 .0751 −.1040

.95 .9500 .8538 .7184 .5541 .3727 .1875 .0112

.96 .9600 .8824 .7718 .6349 .4796 .3151 .1506

.97 .9700 .9114 .8267 .7198 .5954 .4590 .3165

.98 .9800 .9406 .8830 .8089 .7204 .6204 .5115

.99 .9900 .9702 .9407 .9022 .8552 .8003 .7384

1.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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TABLE III.—Hyperbolic Functions.

x ex e−x sinh x cosh x gd x

0.00 1.0000 1.0000 0.0000 1.0000 0
◦
.0000

.01 1.0100 0.9900 .0100 1.0000 0.5729

.02 1.0202 .9802 .0200 1.0002 1.1458

.03 1.0305 .9704 .0300 1.0004 1.7186

.04 1.0408 .9608 .0400 1.0008 2.2912

.05 1.0513 .9512 .0500 1.0012 2.8636

.06 1.0618 .9418 .0600 1.0018 3.4357

.07 1.0725 .9324 .0701 1.0025 4.0074

.08 1.0833 .9231 .0801 1.0032 4.5788

.09 1.0942 .9139 .0901 1.0040 5.1497

.10 1.1052 .9048 .1002 1.0050 5.720

.11 1.1163 .8958 .1102 1.0061 6.290

.12 1.1275 .8869 .1203 1.0072 6.859

.13 1.1388 .8781 .1304 1.0085 7.428

.14 1.1503 .8694 .1405 1.0098 7.995

.15 1.1618 .8607 .1506 1.0113 8.562

.16 1.1735 .8521 .1607 1.0128 9.128

.17 1.1853 .8437 .1708 1.0145 9.694

.18 1.1972 .8353 .1810 1.0162 10.258

.19 1.2092 .8270 .1911 1.0181 10.821

.20 1.2214 .8187 .2013 1.0201 11.384

.21 1.2337 .8106 .2115 1.0221 11.945

.22 1.2461 .8025 .2218 1.0243 12.505

.23 1.2586 .7945 .2320 1.0266 13.063

.24 1.2712 .7866 .2423 1.0289 13.621

.25 1.2840 .7788 .2526 1.0314 14.177

.26 1.2969 .7711 .2629 1.0340 14.732

.27 1.3100 .7634 .2733 1.0367 15.285

.28 1.3231 .7558 .2837 1.0395 15.837

.29 1.3364 .7483 .2941 1.0423 16.388

.30 1.3499 .7408 .3045 1.0453 16.937

.31 1.3634 .7334 .3150 1.0484 17.484

.32 1.3771 .7261 .3255 1.0516 18.030

.33 1.3910 .7189 .3360 1.0549 18.573

.34 1.4049 .7118 .3466 1.0584 19.116

.35 1.4191 .7047 .3572 1.0619 19.656

.36 1.4333 .6977 .3678 1.0655 20.195

.37 1.4477 .6907 .3785 1.0692 20.732

.38 1.4623 .6839 .3892 1.0731 21.267

.39 1.4770 .6771 .4000 1.0770 21.800

.40 1.4918 .6703 .4108 1.0811 22.331

.41 1.5068 .6636 .4216 1.0852 22.859

.42 1.5220 .6570 .4325 1.0895 23.386

.43 1.5373 .6505 .4434 1.0939 23.911

.44 1.5527 .6440 .4543 1.0984 24.434

.45 1.5683 .6376 .4653 1.1030 24.955

.46 1.5841 .6313 .4764 1.1077 25.473

.47 1.6000 .6250 .4875 1.1125 25.989

.48 1.6161 .6188 .4986 1.1174 26.503

.49 1.6323 .6126 .5098 1.1225 27.015

0.50 1.6487 0.6065 0.5211 1.1276 27
◦
.524
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TABLE III.—Hyperbolic Functions.

x ex e−x sinh x cosh x gd x

0.50 1.6487 0.6065 0.5211 1.1276 27
◦
.524

.51 1.6653 .6005 .5324 1.1329 28.031

.52 1.6820 .5945 .5438 1.1383 28.535

.53 1.6989 .5886 .5552 1.1438 29.037

.54 1.7160 .5827 .5666 1.1494 29.537

.55 1.7333 .5770 .5782 1.1551 30.034

.56 1.7507 .5712 .5897 1.1609 30.529

.57 1.7683 .5655 .6014 1.1669 31.021

.58 1.7860 .5599 .6131 1.1730 31.511

.59 1.8040 .5543 .6248 1.1792 31.998

.60 1.8221 .5488 .6367 1.1855 32.483

.61 1.8404 .5433 .6485 1.1919 32.965

.62 1.8589 .5379 .6605 1.1984 33.444

.63 1.8776 .5326 .6725 1.2051 33.921

.64 1.8965 .5273 .6846 1.2119 34.395

.65 1.9155 .5220 .6967 1.2188 34.867

.66 1.9348 .5169 .7090 1.2258 35.336

.67 1.9542 .5117 .7213 1.2330 35.802

.68 1.9739 .5066 .7336 1.2402 36.265

.69 1.9937 .5016 .7461 1.2476 36.726

.70 2.0138 .4966 .7586 1.2552 37.183

.71 2.0340 .4916 .7712 1.2628 37.638

.72 2.0544 .4867 .7838 1.2706 38.091

.73 2.0751 .4819 .7966 1.2785 38.540

.74 2.0959 .4771 .8094 1.2865 38.987

.75 2.1170 .4724 .8223 1.2947 39.431

.76 2.1383 .4677 .8353 1.3030 39.872

.77 2.1598 .4630 .8484 1.3114 40.310

.78 2.1815 .4584 .8615 1.3199 40.746

.79 2.2034 .4538 .8748 1.3286 41.179

.80 2.2255 .4493 .8881 1.3374 41.608

.81 2.2479 .4449 .9015 1.3464 42.035

.82 2.2705 .4404 .9150 1.3555 42.460

.83 2.2933 .4360 .9286 1.3647 42.881

.84 2.3164 .4317 .9423 1.3740 43.299

.85 2.3396 .4274 .9561 1.3835 43.715

.86 2.3632 .4232 .9700 1.3932 44.128

.87 2.3869 .4190 .9840 1.4029 44.537

.88 2.4109 .4148 .9981 1.4128 44.944

.89 2.4351 .4107 1.0122 1.4229 45.348

.90 2.4596 .4066 1.0265 1.4331 45.750

.91 2.4843 .4025 1.0409 1.4434 46.148

.92 2.5093 .3985 1.0554 1.4539 46.544

.93 2.5345 .3946 1.0700 1.4645 46.936

.94 2.5600 .3906 1.0847 1.4753 47.326

.95 2.5857 .3867 1.0995 1.4862 47.713

.96 2.6117 .3829 1.1144 1.4973 48.097

.97 2.6379 .3791 1.1294 1.5085 48.478

.98 2.6645 .3753 1.1446 1.5199 48.857

.99 2.6912 .3716 1.1598 1.5314 49.232

1.00 2.7183 0.3679 1.1752 1.5431 49
◦
.605
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TABLE III.—Hyperbolic Functions.

x l sinh x l cosh x x l sinh x l cosh x x l sinh x l cosh x

1.00 0.0701 0.1884 1.50 0.3282 0.3715 2.00 0.5595 0.5754
1.01 .0758 .1917 1.51 .3330 .3754 2.01 .5640 .5796
1.02 .0815 .1950 1.52 .3378 .3794 2.02 .5685 .5838
1.03 .0871 .1984 1.53 .3426 .3833 2.03 .5730 .5880
1.04 .0927 .2018 1.54 .3474 .3873 2.04 .5775 .5922

1.05 .0982 .2051 1.55 .3521 .3913 2.05 .5820 .5964
1.06 .1038 .2086 1.56 .3569 .3952 2.06 .5865 .6006
1.07 .1093 .2120 1.57 .3616 .3992 2.07 .5910 .6048
1.08 .1148 .2154 1.58 .3663 .4032 2.08 .5955 .6090
1.09 .1203 .2189 1.59 .3711 .4072 2.09 .6000 .6132

1.10 .1257 .2223 1.60 .3758 .4112 2.10 .6044 .6175
1.11 .1311 .2258 1.61 .3805 .4152 2.11 .6089 .6217
1.12 .1365 .2293 1.62 .3852 .4192 2.12 .6134 .6259
1.13 .1419 .2328 1.63 .3899 .4232 2.13 .6178 .6301
1.14 .1472 .2364 1.64 .3946 .4273 2.14 .6223 .6343

1.15 .1525 .2399 1.65 .3992 .4313 2.15 .6268 .6386
1.16 .1578 .2435 1.66 .4039 .4353 2.16 .6312 .6428
1.17 .1631 .2470 1.67 .4086 .4394 2.17 .6357 .6470
1.18 .1684 .2506 1.68 .4132 .4434 2.18 .6401 .6512
1.19 .1736 .2542 1.69 .4179 .4475 2.19 .6446 .6555

1.20 .1788 .2578 1.70 .4225 .4515 2.20 .6491 .6597
1.21 .1840 .2615 1.71 .4272 .4556 2.21 .6535 .6640
1.22 .1892 .2651 1.72 .4318 .4597 2.22 .6580 .6682
1.23 .1944 .2688 1.73 .4364 .4637 2.23 .6624 .6724
1.24 .1995 .2724 1.74 .4411 .4678 2.24 .6668 .6767

1.25 .2046 .2761 1.75 .4457 .4719 2.25 .6713 .6809
1.26 .2098 .2798 1.76 .4503 .4760 2.26 .6757 .6852
1.27 .2148 .2835 1.77 .4549 .4801 2.27 .6802 .6894
1.28 .2199 .2872 1.78 .4595 .4842 2.28 .6846 .6937
1.29 .2250 .2909 1.79 .4641 .4883 2.29 .6890 .6979

1.30 .2300 .2947 1.80 .4687 .4924 2.30 .6935 .7022
1.31 .2351 .2984 1.81 .4733 .4965 2.31 .6979 .7064
1.32 .2401 .3022 1.82 .4778 .5006 2.32 .7023 .7107
1.33 .2451 .3059 1.83 .4824 .5048 2.33 .7067 .7150
1.34 .2501 .3097 1.84 .4870 .5089 2.34 .7112 .7192

1.35 .2551 .3135 1.85 .4915 .5130 2.35 .7156 .7235
1.36 .2600 .3173 1.86 .4961 .5172 2.36 .7200 .7278
1.37 .2650 .3211 1.87 .5007 .5213 2.37 .7244 .7320
1.38 .2699 .3249 1.88 .5052 .5254 2.38 .7289 .7363
1.39 .2748 .3288 1.89 .5098 .5296 2.39 .7333 .7406

1.40 .2797 .3326 1.90 .5143 .5337 2.40 .7377 .7448
1.41 .2846 .3365 1.91 .5188 .5379 2.41 .7421 .7491
1.42 .2895 .3403 1.92 .5234 .5421 2.42 .7465 .7534
1.43 .2944 .3442 1.93 .5279 .5462 2.43 .7509 .7577
1.44 .2993 .3481 1.94 .5324 .5504 2.44 .7553 .7619

1.45 .3041 .3520 1.95 .5370 .5545 2.45 .7597 .7662
1.46 .3090 .3559 1.96 .5415 .5587 2.46 .7642 .7705
1.47 .3138 .3598 1.97 .5460 .5629 2.47 .7686 .7748
1.48 .3186 .3637 1.98 .5505 .5671 2.48 .7730 .7791
1.49 .3234 .3676 1.99 .5550 .5713 2.49 .7774 .7833

1.50 0.3282 0.3715 2.00 0.5595 0.5754 2.50 0.7818 0.7876
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TABLE III.—Hyperbolic Functions.

x l sinh x l cosh x x l sinh x l cosh x x l sinh x l cosh x

2.50 0.7818 0.7876 2.75 0.8915 0.8951 3.0 1.0008 1.0029
2.51 .7862 .7919 2.76 .8959 .8994 3.1 1.0444 1.0462
2.52 .7906 .7962 2.77 .9003 .9037 3.2 1.0880 1.0894
2.53 .7950 .8005 2.78 .9046 .9080 3.3 1.1316 1.1327
2.54 .7994 .8048 2.79 .9090 .9123 3.4 1.1751 1.1761

2.55 .8038 .8091 2.80 .9134 .9166 3.5 1.2186 1.2194
2.56 .8082 .8134 2.81 .9178 .9209 3.6 1.2621 1.2628
2.57 .8126 .8176 2.82 .9221 .9252 3.7 1.3056 1.3061
2.58 .8169 .8219 2.83 .9265 .9295 3.8 1.3491 1.3495
2.59 .8213 .8262 2.84 .9309 .9338 3.9 1.3925 1.3929

2.60 .8257 .8305 2.85 .9353 .9382 4.0 1.4360 1.4363
2.61 .8301 .8348 2.86 .9396 .9425 4.1 1.4795 1.4797
2.62 .8345 .8391 2.87 .9440 .9468 4.2 1.5229 1.5231
2.63 .8389 .8434 2.88 .9484 .9511 4.3 1.5664 1.5665
2.64 .8433 .8477 2.89 .9527 .9554 4.4 1.6098 1.6099

2.65 .8477 .8520 2.90 .9571 .9597 4.5 1.6532 1.6533
2.66 .8521 .8563 2.91 .9615 .9641 4.6 1.6967 1.6968
2.67 .8564 .8606 2.92 .9658 .9684 4.7 1.7401 1.7402
2.68 .8608 .8649 2.93 .9702 .9727 4.8 1.7836 1.7836
2.69 .8652 .8692 2.94 .9746 .9770 4.9 1.8270 1.8270

2.70 .8696 .8735 2.95 .9789 .9813 5.0 1.8704 1.8705
2.71 .8740 .8778 2.96 .9833 .9856 6.0 2.3047 2.3047
2.72 .8784 .8821 2.97 .9877 .9900 7.0 2.7390 2.7390
2.73 .8827 .8864 2.98 .9920 .9943 8.0 3.1733 3.1733
2.74 .8871 .8907 2.99 .9964 .9986 9.0 3.6076 3.6076

2.75 0.8915 0.8951 3.00 1.0008 1.0029 10.0 4.0419 4.0419
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TABLE IV.—Roots of Bessel’s Functions.

x

π
for J0(x) = 0

x

π
for J1(x) = 0

x

π
for J0(x) = 0

x

π
for J1(x) = 0

1 0.7655 1.2197 7 6.7519 7.2448
2 1.7571 2.2330 8 7.7516 8.2454
3 2.7546 3.2383 9 8.7514 9.2459
4 3.7534 4.2411 10 9.7513 10.2463
5 4.7527 5.2428 11 10.7512 11.2466
6 5.7522 6.2439 12 11.7511 12.2469

TABLE V.—Roots of Jn(x) = 0.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

1 2.405 3.832 5.135 6.379 7.586 8.780
2 5.520 7.016 8.417 9.760 11.064 12.339
3 8.654 10.173 11.620 13.017 14.373 15.700
4 11.792 13.323 14.796 16.224 17.616 18.982
5 14.931 16.470 17.960 19.410 20.827 22.220
6 18.071 19.616 21.117 22.583 24.018 25.431
7 21.212 22.760 24.270 25.749 27.200 28.628
8 24.353 25.903 27.421 28.909 30.371 31.813
9 27.494 29.047 30.571 32.050 33.512 34.983
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TABLE VI.— Bessel’s Functions.

x J0(x) J1(x) x J0(x) J1(x) x J0(x) J1(x)

0.0 1.0000 0.0000 5.0 −.1776 −.3276 10.0 −.2459 .0435
0.1 .9975 .0499 5.1 −.1443 −.3371 10.1 −.2490 .0184
0.2 .9900 .0995 5.2 −.1103 −.3432 10.2 −.2496 −.0066
0.3 .9776 .1483 5.3 −.0758 −.3460 10.3 −.2477 −.0313
0.4 .9604 .1960 5.4 −.0412 −.3453 10.4 −.2434 −.0555

0.5 .9385 .2423 5.5 −.0068 −.3414 10.5 −.2366 −.0789
0.6 .9120 .2867 5.6 .0270 −.3343 10.6 −.2276 −.1012
0.7 .8812 .3290 5.7 .0599 −.3241 10.7 −.2164 −.1224
0.8 .8463 .3688 5.8 .0917 −.3110 10.8 −.2032 −.1422
0.9 .8075 .4060 5.9 .1220 −.2951 10.9 −.1881 −.1604

1.0 .7652 .4401 6.0 .1506 −.2767 11.0 −.1712 −.1768
1.1 .7196 .4709 6.1 .1773 −.2559 11.1 −.1528 −.1913
1.2 .6711 .4983 6.2 .2017 −.2329 11.2 −.1330 −.2039
1.3 .6201 .5220 6.3 .2238 −.2081 11.3 −.1121 −.2143
1.4 .5669 .5419 6.4 .2433 −.1816 11.4 −.0902 −.2225

1.5 .5118 .5579 6.5 .2601 −.1538 11.5 −.0677 −.2284
1.6 .4554 .5699 6.6 .2740 −.1250 11.6 −.0446 −.2320
1.7 .3980 .5778 6.7 .2851 −.0953 11.7 −.0213 −.2333
1.8 .3400 .5815 6.8 .2931 −.0652 11.8 .0020 −.2323
1.9 .2818 .5812 6.9 .2981 −.0349 11.9 .0250 −.2290

2.0 .2239 .5767 7.0 .3001 −.0047 12.0 .0477 −.2234
2.1 .1666 .5683 7.1 .2991 .0252 12.1 .0697 −.2157
2.2 .1104 .5560 7.2 .2951 .0543 12.2 .0908 −.2060
2.3 .0555 .5399 7.3 .2882 .0826 12.3 .1108 −.1943
2.4 .0025 .5202 7.4 .2786 .1096 12.4 .1296 −.1807

2.5 −.0484 .4971 7.5 .2663 .1352 12.5 .1469 −.1655
2.6 −.0968 .4708 7.6 .2516 .1592 12.6 .1626 −.1487
2.7 −.1424 .4416 7.7 .2346 .1813 12.7 .1766 −.1307
2.8 −.1850 .4097 7.8 .2154 .2014 12.8 .1887 −.1114
2.9 −.2243 .3754 7.9 .1944 .2192 12.9 .1988 −.0912

3.0 −.2601 .3391 8.0 .1717 .2346 13.0 .2069 −.0703
3.1 −.2921 .3009 8.1 .1475 .2476 13.1 .2129 −.0489
3.2 −.3202 .2613 8.2 .1222 .2580 13.2 .2167 −.0271
3.3 −.3443 .2207 8.3 .0960 .2657 13.3 .2183 −.0052
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