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PREFACE.

About ten years ago I gave a course of lectures on Trigonometric Series,
following closely the treatment of that subject in Riemann’s “Partielle Differen-
tialgleichungen,” to accompany a short course on The Potential Function, given
by Professor B. O. Peirce.

My course has been gradually modified and extended until it has become an
introduction to Spherical Harmonics and Bessel’s and Lamé’s Functions.

Two years ago my lecture notes were lithographed by my class for their own
use and were found so convenient that I have prepared them for publication,
hoping that they may prove useful to others as well as to my own students.
Meanwhile, Professor Peirce has published his lectures on “The Newtonian Po-
tential Function” (Boston, Ginn & Co.), and the two sets of lectures form a
course (Math. 10) given regularly at Harvard, and intended as a partial intro-
duction to modern Mathematical Physics.

Students taking this course are supposed to be familiar with so much of
the infinitesimal calculus as is contained in my “Differential Calculus” (Boston,
Ginn & Co.) and my “Integral Calculus” (second edition, same publishers), to
which I refer in the present book as “Dif. Cal.” and “Int. Cal.” Here, as in the
“Calculus,” I speak of a “derivative” rather than a “differential coefficient,” and
use the notation D, instead of % for “partial derivative with respect to x.”

The course was at first, as I have said, an exposition of Riemann’s “Partielle
Differentialgleichungen.” In extending it, I drew largely from Ferrer’s “Spherical
Harmonics” and Heine’s “Kugelfunctionen,” and was somewhat indebted to
Todhunter (“Functions of Laplace, Bessel, and Lamé”), Lord Rayleigh (“Theory
of Sound”), and Forsyth (“Differential Equations”).

In preparing the notes for publication, I have been greatly aided by the
criticisms and suggestions of my colleagues, Professor B. O. Peirce and Dr.
Maxime Bocher, and the latter has kindly contributed the brief historical sketch
contained in Chapter IX.

W. E. BYERLY.

CAMBRIDGE, MASS., Sept. 1893.



ii

ANALYTICAL TABLE OF CONTENTS.

CHAPTER L

PAGES
INTRODUCTION 1-29

ART. 1. List of some important homogeneous linear partial differential equa-
tions of Physics.—ARTS. 2-4. Distinction between the general solution and a
particular solution of a differential equation. Need of additional data to make
the solution of a differential equation determinate. Definition of linear and of
linear and homogeneous.—ARTS. 5—6. Particular solutions of homogeneous lin-
ear differential equations may be combined into a more general solution. Need of
development in terms of normal forms.—ART. 7. Problem: Permanent state of
temperatures in a thin rectangular plate. Need of a development in sine series.
Example.—ART. 8. Problem: Transverse vibrations of a stretched elastic string.
A development in sine series suggested.—ART. 9. Problem: Potential function
due to the attraction of a circular ring of small cross-section. Surface Zonal Har-
monics (Legendre’s Coefficients). Example.—ART. 10. Problem: Permanent
state of temperatures in a solid sphere. Development in terms of Surface Zonal
Harmonics suggested.—ARTS. 11-12. Problem: Vibrations of a circular drum-
head. Cylindrical Harmonics (Bessel’s Functions). Recapitulation.—ART. 13.
Method of making the solution of a linear partial differential equation depend
upon solving a set of ordinary differential equations by assuming the dependent
variable equal to a product of factors each of which involves but one of the inde-
pendent variables. ARTS. 14-15 Method of solving ordinary homogeneous linear
differential equations by development in power series. Applications.—ART. 16.
Application to Legendre’s Equation. Several forms of general solution obtained.
Zonal Harmonics of the second kind.—ART. 17. Application to Bessel’s Equa-
tion. General solution obtained for the case where m is not an integer, and
for the case where m is zero. Bessel’s Function of the second kind and zeroth
order.—ART. 18. Method of obtaining the general solution of an ordinary lin-
ear differential equation of the second order from a given particular solution.
Application to the equations considered in Arts. 14-17.

CHAPTER II.

DEVELOPMENT IN TRIGONOMETRIC SERIES 30-55

ARTS. 19-22. Determination of the coefficients of n terms of a sine series so
that the sum of the terms shall be equal to a given function of x for n given val-
ues of x. Numerical example.—ART. 23. Problem of development in sine series
treated as a limiting case of the problem just solved.—ARTS. 24-25. Shorter



TABLE OF CONTENTS iii

method of solving the problem of development in series involving sines of whole
multiples of the variable. Working rule deduced. Recapitulation.—ART. 26. A
few important sine developments obtained. Examples.—ARTS. 27-28. Develop-
ment in cosine series. Examples.—ART. 29. Sine series an odd function of the
variable, cosine series an even function, and both series periodic functions.—
ART. 30. Development in series involving both sines and cosines of whole mul-
tiples of the variable. Fourier’s series. Examples.—ART. 31. Extension of the
range within which the function and the series are equal. Examples.—ART. 32.
Fourier’s Integral obtained.

CHAPTER III.

CONVERGENCE OF FOURIER’S SERIES 56—69

ARTS. 33-36. The question of the convergence of the sine series for unity
considered at length.—ARTS. 37-38. Statement of the conditions which are
sufficient to warrant the development of a function into a Fourier’s series. His-
torical note. ART. 39. Graphical representation of successive approximations to
a sine series. Properties of a Fourier’s series inferred from the constructions.—
ARTS. 40-42. Investigation of the conditions under which a Fourier’s series can
be differentiated term by term.—ART. 43. Conditions under which a function
can be expressed as a Fourier’s Integral.

CHAPTER IV.

SOLUTION OF PROBLEMS IN PHYSICS BY THE AID OF FOURIER'S INTE-
GRALS AND FOURIER’S SERIES 70-135

ARTS. 44-48. Logarithmic Potential. Flow of electricity in an infinite plane,
where the value of the Potential Function is given along an infinite straight line;
along two mutually perpendicular straight lines; along two parallel straight lines.
Examples. Use of Conjugate Functions. Sources and Sinks. Equipotential lines
and lines of Flow. Examples.—ARTS. 49-52. One-dimensional flow of heat.
Flow of heat in an infinite solid; in a solid with one plane face at the tempera-
ture zero; in a solid with one plane face whose temperature is a function of the
time (Riemann’s solution); in a bar of small cross section from whose surface
heat escapes into air at temperature zero. Limiting state approached when the
temperature of the origin is a periodic function of the time. Examples.—ARTS.
53-54. Temperatures due to instantaneous and to permanent heat sources
and sinks, and to heat doublets. Examples. Application to the case where
there is leakage.—ARTS. 55-56. Transmission of a disturbance along an infinite
stretched elastic string. Examples.—ARTS. 57-58. Stationary temperatures
in a long rectangular plate. Temperature of the base unity. Summation of a
Trigonometric series. Isothermal lines and lines of flow. Examples.—ART. 59.



TABLE OF CONTENTS iv

Potential Function given along the perimeter of a rectangle. Examples.—ARTS.
60-63. One-dimensional flow of heat in a slab with parallel plane faces. Both
faces at temperature zero. Both faces adiathermanous. Temperature of one face
a function of the time. Examples.—ART. 64. Motion of a stretched elastic string
fastened at the ends. Steady vibration. Nodes. Examples.—ART. 65. Motion of
a string in a resisting medium.—ART. 66. Flow of heat in a sphere whose surface
is kept at a constant temperature.—ARTS. 67-68. Cooling of a sphere in air.
Surface condition given by a differential equation. Development in a Trigono-
metric series of which Fourier’s Sine Series is a special case. Examples.—ARTS.
69-70. Flow of heat in an infinite solid with one plane face which is exposed
to air whose temperature is a function of the time. Solution for an instanta-
neous heat source when the temperature of the air is zero. Examples.—ARTS.
71-73. Vibration of a rectangular drumhead. Development of a function of two
variables in a double Fourier’s Series. Examples. Nodal lines in a rectangular
drumhead. Nodal lines in a square drumhead.

MISCELLANEOUS PROBLEMS 135-143

I. Logarithmic Potential. Polar Coordinates.—II. Potential Function in
Space. III. Conduction of heat in a plane.—IV. Conduction of heat in Space.

CHAPTER V.

Z0ONAL HARMONICS 143-195

ART. 74. Recapitulation. Surface Zonal Harmonics (Legendrians). Zonal
Harmonics of the second kind.—ARTS. 75-76. Legendrians as coefficients in
a Power Series. Special values.—ART. 77. Summary of the properties of a
Legendrian. List of the first eight Legendrians. Relation connecting any three
successive Legendrians.—ARTS. 78-81. Problems in Potential. Potential Func-
tion due to the attraction of a material circular ring of small cross section.
Potential Function due to a charge of electricity placed on a thin circular disc.
Examples: Spheroidal conductors. Potential Function due to the attraction
of a material homogeneous circular disc. Examples: Homogeneous hemisphere;
Heterogeneous sphere; Homogeneous spheroids. Generalisation.—ART. 82. Leg-
endrian as a sum of cosines.—ARTS. 83-84. Legendrian as the mth derivative
of the mth power of 22 — —1.—ART. 85. Equations derivable from Legendre’s
Equation.—ART. 86. Legendrian as a Partial Derivative.—ART. 87. Legen-
drian as a Definite Integral. ARTS. 88-90. Development in Zonal Harmonic
Series. Integral of the product of two Legendrians of different degrees. Integral
of the square of a Legendrian. Formulas for the coefficients of the series.—
ARTs. 91-92. Integral of the product of two Legendrians obtained by the aid
of Legendre’s Equation; by the aid of Green’s Theorem. Additional formulas
for integration. Examples.—ARTS. 93-94. Problems in Potential where the
value of the Potential Function is given on a spherical surface and has circular



TABLE OF CONTENTS v

symmetry about a diameter. Examples.—ART. 95. Development of a power
of x in Zonal Harmonic Series.—ART. 96. Useful formulas.—ART. 97. Devel-
opment of sinnf and cosnf in Zonal Harmonic Series. Examples. Graphical
representation of the first seven Surface Zonal Harmonics. Construction of suc-
cessive approximations to Zonal Harmonic Series. ARTS. 98-99. Method of
dealing with problems in Potential when the density is given. Examples.—ART.
100. Surface Zonal Harmonics of the second kind. Examples: Conal Harmonics.

CHAPTER VL

SPHERICAL HARMONICS 196-219

ARTS. 101-102. Particular Solutions of Laplace’s Equation obtained. As-
sociated Functions. Tesseral Harmonics. Surface Spherical Harmonics. Solid
Spherical Harmonics. Table of Associated Functions. Examples.—ARTS. 103—
108. Development in Spherical Harmonic Series. The integral of the product
of two Surface Spherical Harmonics of different degrees taken over the surface
of the unit sphere is zero. Examples. The integral of the product of two Asso-
ciated Functions of the same order. Formulas for the coeflicients of the series.
Mlustrative example. Examples.—ARTS. 109-110. Any homogeneous rational
integral Algebraic function of x, y, and z which satisfies Laplace’s Equation is
a Solid Spherical Harmonic. Examples.—ART. 111. A transformation of axes
to a new set having the same origin will change a Surface Spherical Harmonic
into another of the same degree.—ARTS. 112-114. Laplacians. Integral of the
product of a Surface Spherical Harmonic by a Laplacian of the same degree.
Development in Spherical Harmonic Series by the aid of Laplacians. Table of
Laplacians. Example.—ART. 115. Solution of problems in Potential by direct
integration. Examples.—ARTS. 116-118. Differentiation along an axis. Axes
of a Spherical Harmonic.—ART. 119. Roots of a Zonal Harmonic. Roots of a
Tesseral Harmonic. Nomenclature justified.

CHAPTER VII.

CYLINDRICAL HARMONICS (BESSEL’S FUNCTIONS) 220-238

ART. 120. Recapitulation. Cylindrical Harmonics (Bessel’s Functions) of the
zeroth order; of the nth order; of the second kind. General solution of Bessel’s
Equation.—ART. 121. Bessel’s Functions as definite integrals. Examples.—
ART. 122. Properties of Bessel’s Functions. Semi-convergent series for a Bessel’s
Function. Examples.—ART. 123. Problem: Stationary temperatures in a cylin-
der (a) when the temperature of the convex surface is zero; (b) when the convex
surface is adiathermanous; (¢) when the convex surface is exposed to air at the
temperature zero.—ART. 124. Roots of Bessel’s functions.—ART. 125. The in-
tegral of r times the product of two Cylindrical Harmonics of the zeroth order.



TABLE OF CONTENTS vi

Example.—ART. 126. Development in Cylindrical Harmonic Series. Formulas
for the coefficients. Examples.—ART. 127. Problem: Stationary temperatures
in a cylindrical shell. Bessel’s Functions of the second kind employed. Example:
Vibration of a ring membrane.—ART. 128. Problem: Stationary temperatures
in a cylinder when the temperature of the convex surface varies with the distance
from the base. Bessel’s Functions of a complex variable. Examples.—ART. 129.
Problem: Stationary temperatures in a cylinder when the temperatures of the
base are unsymmetrical. Bessel’s Functions of the nth order employed. Miscel-
laneous examples. Bessel’s Functions of fractional order.

CHAPTER VIIL

LAPLACE’S EQUATION IN CURVILINEAR COORDINATES. ELLIPSOIDAL
HARMONICS 239-266

ARTS. 130-131. Orthogonal Curvilinear Codrdinates in general. Laplace’s
Equation expressed in terms of orthogonal curvilinear coordinates by the aid of
Green’s theorem.—ARTS. 132-135. Spheroidal Codrdinates. Laplace’s Equation
in spheroidal codrdinates, in normal spheroidal coordinates. Examples. Condi-
tion that a set of curvilinear coordinates should be normal. Thermometric Pa-
rameters. Particular solutions of Laplace’s Equation in spheroidal cotrdinates.
Spheroidal Harmonics. Examples. The Potential Function due to the attrac-
tion of an oblate spheroid. Solution for an external point. Examples.—ARTS.
136-141. Ellipsoidal Coérdinates. Laplace’s Equation in ellipsoidal coérdinates.
Normal ellipsoidal coordinates expressed as Elliptic Integrals. Particular solu-
tions of Laplace’s Equation. Lamé’s Equation. Ellipsoidal Harmonics (Lamé’s
Functions). Tables of Ellipsoidal Harmonics of the degrees 1, 2, and 3. Lamé’s
Functions of the second kind. Examples. Development in Ellipsoidal Har-
monic series. Value of the Potential Function at any point in space when its
value is given at all points on the surface of an ellipsoid.—ART. 142. Conical
Coordinates. The product of two Ellipsoidal Harmonics a Spherical Harmonic.—
ART. 143. Toroidal Codrdinates. Laplace’s Equation in toroidal codrdinates.
Particular solutions. Toroidal Harmonics. Potential Function for an anchor ring.

CHAPTER IX.
HISTORICAL SUMMARY 267-274
APPENDIX.
TABLES 274285
Table I. Surface Zonal Harmonics. Argument 6 276

Table II. Surface Zonal Harmonics. Argument x 278



TABLE OF CONTENTS

Table TII. Hyperbolic Functions
Table IV. Roots of Bessel’s Functions
Table V. Roots of Bessel’s Functions
Table VI. Bessel’s Functions

vii

280
284
284
285



CHAPTER L

INTRODUCTION.

1. In many important problems in mathematical physics we are obliged
to deal with partial differential equations of a comparatively simple form.

For example, in the Analytical Theory of Heat we have for the change of
temperature of any solid due to the flow of heat within the solid, the equation

Dyu = a*(Dju+ Dju+ D2u),* 1]

where u represents the temperature at any point of the solid and ¢ the time.
In the simplest case, that of a slab of infinite extent with parallel plane
faces, where the temperature can be regarded as a function of one cotrdinate,
[1] reduces to
Dyu = a*>D?u, [11]

a form of considerable importance in the consideration of the problem of the
cooling of the earth’s crust.

In the problem of the permanent state of temperatures in a thin rectangular
plate, the equation [1] becomes

Diu+ Dju=0. [111]

In polar or spherical coérdinates [1] is less simple, it is
2

a
Dtu:—

1 1
;- D, (r*Dyu) + —— Dy(sin 0 Dgu) + —5—D3u| . [1v]

sin 6 sin® 0

In the case where the solid in question is a sphere and the temperature at any
point depends merely on the distance of the point from the centre [1v] reduces
to

Dy (ru) = a>D?(ru). [V]

In cylindrical coordinates [1] becomes
Diu=a?[D?u+ D L D2u+ D2
= a’| 7AH—; ru+r—2 o+ DZul. [v1]

In considering the flow of heat in a cylinder when the temperature at any
point depends merely on the distance r of the point from the axis [vi] becomes

1
Dyu = a*(DXu + = D,u). [vi]
T

In Acoustics in several problems we have the equation

Dy = a’D3y; [vin]

IFor the sake of brevity we shall often use the symbol V? for the operation D2 + Dg + D2,
and with this notation equation [I] would be written Diu = a?V?u.
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for instance, in considering the transverse or the longitudinal vibrations of a
stretched elastic string, or the transmission of plane sound waves through the
air.

If in considering the transverse vibrations of a stretched string we take ac-
count of the resistance of the air [vi11] is replaced by

D?y +2kDyy = a*D2y. [1X]

In dealing with the vibrations of a stretched elastic membrane, we have the
equation
D?z = c*(D%z + Dgz), [x]

or in cylindrical coordinates
1 1
D?z = *(D?z + ;DTz + ﬁDiz) [x1]

In the theory of Potential we constantly meet Laplace’s Equation

DIV+DZV + DV =0 [x11]
or V3V =0
which in spherical coordinates becomes
1 9 1 . L
ﬁ |:’I"DT (TV) + ml)g (SlIl QDQV) + SH120D¢V:| = 0, [XIH]
and in cylindrical coordinates
1 1
D}V + =D,V + =DV + DV = 0. [x1v]
r r

In curvilinear codrdinates it is
hihohs [D <h1D V) +D (h"‘D V) +D (hSD V)} =0;
P1 h2 hg P1 P2 hghl P2 P3 hlhg P3 ’
[xV]
where fi(z,y, 2) = p1, fo(z,y,2) = p2, f3(2,9,2) = p3

represent a set of surfaces which cut one another at right angles, no matter what
values are given to p1, p2, and ps3; and where

hi = (Dzp1)? + (Dyp1)? + (D2p1)?

h3 = (Dp2)® + (Dyp2)? + (D2p2)?

h3 = (Daps)? + (Dyps)® + (D.p3)?,
and, of course, must be expressed in terms of p1, pa, and ps.

If it happens that V2p; = 0, V2ps = 0, and V?ps = 0, then Laplace’s
Equation [xv] assumes the very simple form

hiD2V +h3D> V 4+ h3D2 V = 0. [xv1]
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2. A differential equation is an equation containing derivatives or differ-
entials with or without the primitive variables from which they are derived.

The general solution of a differential equation is the equation expressing the
most general relation between the primitive variables which is consistent with
the given differential equation and which does not involve differentials or deriva-
tives. A general solution will always contain arbitrary (i.e., undetermined)
constants or arbitrary functions.

A particular solution of a differential equation is a relation between the
primitive variables which is consistent with the given differential equation, but
which is less general than the general solution, although included in it.

Theoretically, every particular solution can be obtained from the general
solution by substituting in the general solution particular values for the arbitrary
constants or particular functions for the arbitrary functions; but in practice it is
often easy to obtain particular solutions directly from the differential equation
when it would be difficult or impossible to obtain the general solution.

3. If a problem requiring for its solution the solving of a differential equa-
tion is determinate, there must always be given in addition to the differential
equation enough outside conditions for the determination of all the arbitrary
constants or arbitrary functions that enter into the general solution of the equa-
tion; and in dealing with such a problem, if the differential equation can be
readily solved the natural method of procedure is to obtain its general solu-
tion, and then to determine the constants or functions by the aid of the given
conditions.

It often happens, however, that the general solution of the differential equa-
tion in question cannot be obtained, and then, since the problem if determinate
will be solved if by any means a solution of the equation can be found which
will also satisfy the given outside conditions, it is worth while to try to get par-
ticular solutions and so to combine them as to form a result which shall satisfy
the given conditions without ceasing to satisfy the differential equation.

4. A differential equation is linear when it would be of the first degree
if the dependent variable and all its derivatives were regarded as algebraic un-
known quantities. If it is linear and contains no term which does not involve
the dependent variable or one of its derivatives, it is said to be linear and ho-
mogeneous.

All the differential equations collected in Art. 1 are linear and homogeneous.

5.  If a value of the dependent variable has been found which satisfies a
given homogeneous, linear, differential equation, the product formed by multi-
plying this value by any constant will also be a value of the dependent variable
which will satisfy the equation.

For if all the terms of the given equation are transposed to the first member,
the substitution of the first-named value must reduce that member to zero;
substituting the second value is equivalent to multiplying each term of the result
of the first substitution by the same constant factor, which therefore may be
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taken out as a factor of the whole first member. The remaining factor being
zero, the product is zero and the equation is satisfied.

If several values of the dependent variable have been found each of which
satisfies the given differential equation, their sum will satisfy the equation; for if
the sum of the values in question is substituted in the equation each term of the
sum will give rise to a set of terms which must be equal to zero, and therefore
the sum of these sets must be zero.

6. It is generally possible to get by some simple device particular solutions
of such differential equations as those we have collected in Art. 1. The object of
the branch of mathematics with which we are about to deal is to find methods of
so combining these particular solutions as to satisfy any given conditions which
are consistent with the nature of the problem in question.

This often requires us to be able to develop any given function of the variables
which enter into the expression of these conditions in terms of normal forms
suited to the problem with which we happen to be dealing, and suggested by
the form of particular solution that we are able to obtain for the differential
equation.

These normal forms are frequently sines and cosines, but they are often
much more complicated functions known as Legendre’s Coefficients, or Zonal
Harmonics; Laplace’s Coefficients, or Spherical Harmonics: Bessel’s Functions,
or Cylindrical Harmonics; Lamé’s Functions, or Ellipsoidal Harmonics, &c.

7. As an illustration, let us take Fourier’s problem of the permanent state
of temperatures in a thin rectangular plate of breadth = and of infinite length
whose faces are impervious to heat. We shall suppose that the two long edges of
the plate are kept at the constant temperature zero, that one of the short edges,
which we shall call the base of the plate, is kept at the temperature unity, and
that the temperatures of points in the plate decrease indefinitely as we recede
from the base; we shall attempt to find the temperature at any point of the
plate.

Let us take the base as the axis of X and one end of the base as the origin.
Then to solve the problem we are to find the temperature u of any point from
the equation

Diu+ Dju =0 [ITT] Art. 1

subject to the conditions

u=0 when z=0 (1)
u=0 “ ooz =mw (2)
u=0 “ y=o0 (3)
u=1 “ y=0. (4)

We shall begin by getting a particular solution of [i1], and we shall use a
device which always succeeds when the equation is linear and homogeneous and
has constant coefficients.
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Assume? u = e®¥17% where a and 3 are constants, substitute in [m1] and

divide by e®¥*5% and we have a? + 32 = 0. If, then, this condition is satisfied
u = et is a solution.

Hence u = e®¥*221 3 ig a solution of [111], no matter what value may be given
to a.

This form is objectionable, since it involves an imaginary. We can, however,
readily improve it.

Take u = e™e™® a solution of [11], and u = e*Ye , another solution
of [m1]; add these values of u and divide the sum by 2 and we have e* cos ax.
(v. Int. Cal. Art. 35, [1].) Therefore by Art. 5

—axi

u = e cosax (5)

is a solution of [m1]. Take u = e®¥e® and u = e*Ye~ %! subtract the second
value of u from the first and divide by 2¢ and we have e*¥ sinax. (v. Int. Cal.

Art. 35, [2]). Therefore by Art. 5
u = e*sinax (6)

is a solution of [11].
Let us now see if out of these particular solutions we can build up a solution
which will satisfy the conditions (1), (2), (3), and (4).

Consider u=e*sinaz. (6)

It is zero when x = 0 for all values of . It is zero when z = 7 if « is a whole
number. It is zero when y = oo if « is negative. If, then, we write u equal
to a sum of terms of the form Ae™"™Y sin mx, where m is a positive integer, we
shall have a solution of [111] which satisfies conditions (1), (2) and (3). Let this
solution be

u=Ajre Ysinz + Ase ¥ sin 2z + Ase Y sin3x + Age ¥sindx + - - - (7)

Ay, Asg, A3, A4, &c., being undetermined constants.
When y =0 (7) reduces to

uw=Aj;sinz + Ay sin2x + Aszsin3x + Agsindx +--- . (8)

If now it is possible to develop unity into a series of the form (8), our problem
is solved; we have only to substitute the coefficients of that series for Ay, As,
A3, &ec. in (7)

It will be proved later that

4 (. 1 . 1 . 1 .
l=—|(sinx+ —sin3x + —sinbx + =sin7x + - - -
T 3 5 7

2This assumption must be regarded as purely tentative. It must be tested by substituting
in the equation, and is justified if it leads to a solution.
3We shall regularly use the symbol 4 for v/—1.



INTRODUCTION. 6

for all values of = between 0 and 7; hence our required solution is
41 . . 1 4, . 1 ., . 1 -, .
u=— |e Ysinx + 3¢ Ysin 3z + e Ysin b + e YsinTe + - - 9)
m

for this satisfies the differential equation and all the given conditions.

If the given temperature of the base of the plate instead of being unity is a
function of x, we can solve the problem as before if we can express the given
function of z as a sum of terms of the form A sin ma;, where m is a whole number.

The problem of finding the value of the potential function at any point of a
long, thin, rectangular conducting sheet, of breadth 7, through which an electric
current is flowing, when the two long edges are kept at potential zero, and one
short edge at potential unity, is mathematically identical with the problem we
have just solved.

EXAMPLE.

Taking the temperature of the base of the plate described above as 100°
centigrade, and that of the sides of the plate as 0°, compute the temperatures

of the points
7r 7r ™
(a) (gal>v (b) (§;2>ﬂ (C) (533>a
correct to the nearest degree. Ans. (a) 26°; (b) 15°; (c) 6°.

8. As another illustration, we shall take the problem of the transverse
vibrations of a stretched string fastened at the ends, initially distorted into
some given curve and then allowed to swing.

Let the length of the string be [. Take the position of equilibrium of the
string as the axis of X, and one of the ends as the origin, and suppose the string
initially distorted into a curve whose equation y = f(x) is given.

We have then to find an expression for y which will be a solution of the
equation

D}y = a’D32y [vi] Art. 1,

while satisfying the conditions

y=0 when x2=0 (1)
y=0 “ r=1 (2)
y=f(x) “ t=0 (3)
Dy =0 “« =0, (4)

the last condition meaning merely that the string starts from rest.

As in the last problem let? y = e®®5% and substitute in [vin]. Divide by
e+t and we have 32 = a%a? as the condition that our assumed value of y
shall satisfy the equation.

y = eaa::taat (5)

4See note on page 5.
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is, then, a solution of (vimr) whatever the value of a.

It is more convenient to have a trigonometric than an exponential form to
deal with, and we can readily obtain one by using an imaginary value for a in
(5). Replace a by ai and (5) becomes y = e+ 4 solution of [vin]. Replace
a by —ai and (5) becomes y = e~ (**a)2¢ " another solution of [vin]. Add these
values of y and divide by 2 and we have cos o(z £ at). Subtract the second value
of y from the first and divide by 2i and we have sin a(z + at).

y = cos oz + at)

y = cosa(z — at)

y = sina(z + at)

y =sina(z — at)
are, then, solutions of [viii]. Writing y successively equal to half the sum of the
first pair of values, half their difference, half the sum of the last pair of values,
and half their difference, we get the very convenient particular solutions of [vi11].

Y = COS ax cos aat

Yy = sin az sin aat

y = sin ax cos aat

Yy = cos ax sin aat.
If we take the third form
y = sin ax cos aat

it will satisfy conditions (1) and (4), no matter what value may be given to «,
. . . . mm . .
and it will satisfy (2) if a = N where m is an integer.
If then we take
t 2 2mat 3 3mat
Yy = Alsin%xcos¥ —I—Agsin%mcos%a +A3sin%$cos 7Tla +--- (6)

where Ay, A, Az --- are undetermined constants, we shall have a solution of
[vir] which satisfies (1), (2), and (4). When ¢t = 0 it reduces to

y:AlsinWTx—l—Agsin%Tw+Agsin?ﬂTTx+~-~ (7

If now it is possible to develop f(z) into a series of the form (7), we can solve
our problem completely. We have only to take the coefficients of this series as
values of Aj, As, As --- in (6), and we shall have a solution of [vi] which
satisfies all our given conditions.

In each of the preceding problems the normal function, in terms of which
a given function has to be expressed, is the sine of a simple multiple of the
variable. It would be easy to modify the problem so that the normal form
should be a cosine.

We shall now take a couple of problems which are much more complicated
and where the normal function is an unfamiliar one.
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9. Let it be required to find the potential function due to a circular wire
ring of small cross section and of given radius ¢, supposing the matter of the
ring to attract according to the law of nature.

We can readily find, by direct integration, the value of the potential function
at any point of the axis of the ring. We get for it

v M (1)
where M is the mass of the ring, and x the distance of the point from the centre
of the ring.

Let us use spherical coordinates, taking the centre of the ring as origin and
the axis of the ring as the polar axis.

To obtain the value of the potential function at any point in space, we must
satisfy the equation

1 1
rD2(rV) + gD (sin@DyV) + mD;V =0, [xi] Art. 1,
subject to the condition
M
V=——+ when 6=0. (1)
(@ + 1)t

From the symmetry of the ring, it is clear that the value of the potential
function must be independent of ¢, so that [x111] will reduce to

1
TD?(?"V) + SIWDQ(SIH GDQV) =0. (2)

We must now try to get particular solutions of (2), and as the coefficients
are not constant, we are driven to a new device.
Let® V = r™P, where P is a function of # only, and m is a positive integer,
and substitute in (2), which becomes
,',,m
m(m + 1)r™P + ——Dy(sin 0Dy P) = 0.
sin 0
Divide by ™ and use the notation of ordinary derivatives since P depends upon
0 only, and we have the equation

) d(sin&ccll—g)
mm+ P+ S~ % )

from which to obtain P.
Equation (3) can be simplified by changing the independent variable. Let
x = cosf and (3) becomes

% [(1_‘”2)?11;} +m(m+1)P =0. (4)

5See note on page 5.
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Assume® now that P can be expressed as a sum or as a series of terms

involving whole powers of  multiplied by constant coeflicients.
Let P =) a,z™ and substitute this value of P in (4). We get

Snn = 1az™ 2 — n(n + ayz™ + m(m + 1)a,z™] = 0, (5)

where the symbol > indicates that we are to form all the terms we can by
taking successive whole numbers for n.

As (5) must be true no matter what the value of x, the coefficient of any
given power of x, as for instance z*, must vanish. Hence

(k+2)(k+ 1Dagte — k(k+ 1)ag +m(m+1)ar =0 (6)
m(m+1) —k(k+1) .
E+D(k+2) " @

and k42 = —

If now any set of coefficients satisfying the relation (7) be taken, P = Y ayz*
will be a solution of (4).

If k= m, Ak4+2 = 07 Al+4 = 0, &ec.

Since it will answer our purpose if we pick out the simplest set of coefficients
that will obey the condition (7), we can take a set including a,.
Let us rewrite (7) in the form

(k +2)(k + 1)
(m—k)(m+k+1)

ap = — Af42. (8)

We get from (8), beginning with k = m — 2,

u ~ m(m—1) u

2T o 2m—1) "

m(m — 1)(m72)(m73)a
2.4.2m—-1)2m—-3) ™"

m(m —1)(m — 2)(m — 3)(m — 4)(m — 5)

=6 = = G am—)@m_3)@m—5 ™ <&

Qm—4

If m is even we see that the set will end with ag, if m is odd, with a.

m_ mm—=1) .y m(m—1)(m—2)(m—3)
2.2m — 1) 2.4.(2m — 1)(2m — 3)

P=ay, |z™ - med L

where a,, is entirely arbitrary, is, then, a solution of (4). It is found convenient
to take a,, equal to
2m—-1)2m-3)---1
m!

and it can be shown that with this value of a,, P = 1 when z = 1.

6See note on page 5.
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P is a function of z and contains no higher powers of x than x™. It is usual
to write it as P, ().
We proceed to compute a few values of P, (x) from the formula

() = (2m — 1)(277'1 -3)---1 {xm _ m(m—1) =2
m 2.(2m —1)
m(m —1)(m —2)(m—3
5.4.(273(— 1)(2375 —3) Jomest .. ] ' ©)
We have:
Py(z)=1 or  Py(cosh) =
Pi(z)==x “ Py (cosB) = cosf
Py(z) =432 -1) * Py(cosf) = L(3cos® 0 — 1)
Ps(z) = 1(52° — 32) P3(cos ) = 2(5cos® 0 — 3cos ) (10)
Py(z) = £(352" — 30z% 4 3) or
Py(cos ) = £(35cos” § — 30cos® 0 + 3)
Ps(z) = £(632° — 70z% 4 15z) or
P5(cos ) = £(63cos® § — T0cos® 0 + 15 cos 6).

We have obtained P = P,,(z) as a particular solution of (4) and P =
P,,(cosf) as a particular solution of (3). P, (x) or Py, (cosf) is a new function,
known as a Legendre’s Coefficient, or as a Surface Zonal Harmonic, and occurs
as a normal form in many important problems.

V = r™P,,(cos ) is a particular solution of (2) and r™ P,, (cos 6) is sometimes
called a Solid Zonal Harmonic.

We can now proceed to the solution of our original problem.

V = AgrPy(cos ) + A1rPy(cosf) + Asr? Py(cos 6) + Aszr® Ps(cosf) 4 - (11)

where Ay, A1, Ag, &c., are entirely arbitrary, is a solution of (2) (v. Art. 5).
When 6 =0 (11) reduces to

V= Ao+ Air + Aor? + Agr® + -+

since, as we have said, P, (z) =1 when =1, or P,,,(cosf) = 1 when 6 = 0.
By our condition (1)

B M
(@)
when 6 = 0.
By the Binomial Theorem
M M 1 172 137 1.3576

(2 +12)5 ¢ 22 244 2468
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provided r < c¢. Hence

M 172 1.3 74
V= - Py(cosb) — 52—2P2(cos¢9) + ﬂ%R;(cosO)
1.3.5 76

is our required solution if < ¢; for it is a solution of equation (2) and satisfies
condition (1).

EXAMPLE.

Taking the mass of the ring as one pound and the radius of the ring as one
foot, compute to two decimal places the value of the potential function due to
the ring at the points

(0) (r=20=0); (d) (r=6,0=0); () (r:.6,9:§);
(b) (7“:.2,9:%); (e) (T=.6,9=%); (9) (r:.G,Hzg);
(¢) <r=.2,9:g); Ans.

(a) .98; (b) .99; (¢) 1.01; (d) .86;
(e) .90; (f) 1.00; (g) 1.10.

The unit used is the potential due to a pound of mass concentrated at a point
and attracting a second pound of mass concentrated at a point, the two points
being a foot apart.

10. A slightly different problem calling for development in terms of Zonal
Harmonics is the following:

Required the permanent temperatures within a solid sphere of radius 1, one
half of the surface being kept at the constant temperature zero, and the other
half at the constant temperature unity.

Let us take the diameter perpendicular to the plane separating the unequally
heated surfaces as our axis and let us use spherical coordinates. As in the last
problem, we must solve the equation

rD?(ru) +

1 , 1,
SinGDa(Sm 0Dgu) + FDd)u =0 [x111] Art. 1

which as before reduces to

1
2 .
rDz(ru) + —SineDg(sm 0Dgu) =0 (1)

from the consideration that the temperatures must be independent of ¢.
Our equation of condition is

uzlfrom@zOtoH:garldu:Oflrom@:g‘509:777 (2)
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when r = 1.
As we have seen u = r"™P,,(cosf) is a particular solution of (1), m being
any positive whole number, and

u = Agr'Py(cos ) + A1rPy(cos ) 4+ Agr? Py(cos ) + Asr®Ps(cos@) +--- (3)

where Ag, A1, Ay, As--- are undetermined constants, is a solution of (1).
When r =1 (3) reduces to

u = AgPy(cosf) + A1 Py(cosB) + Ay Py(cosf) + AsPs(cosf) + - - - (4)

If then we can develop our function of 6 which enters into equation (2) in a
series of the form (4), we have only to take the coefficients of that series as the
values of Ag, Ay, Ag, &c., in (3) and we shall have our required solution.

11. As a last example we shall take the problem of the vibration of
a stretched circular membrane fastened at the circumference, that is, of an
ordinary drumhead. We shall suppose the membrane initially distorted into
any given form which has circular symmetry” about an axis through the centre
perpendicular to the plane of the boundary, and then allowed to vibrate.

Here we have to solve

1 1
D?z=c? <D$z +-Dpz + T2Déz> [x1] Art. 1

subject to the conditions

z=f(r) when t=0 (1)
Dz =0 “ t=0 (2)
z=0 “ r=a. (3)

From the symmetry of the supposed initial distortion z must be independent
of ¢, therefore [x1] reduces to

1
D?z=c? (sz + DT2> 4)
r

and this is the equation for which we wish to find a particular solution.

We shall employ a device not unlike that used in Art. 9.

Assume® z = R.T where R is a function of r alone and T is a function of ¢
alone. Substitute this value of z in (4) and we get

RD?T = T <D£R + 1DTR>
T

7A function of the codrdinates of a point has circular symmetry about an axis when its
value is not affected by rotating the point through any angle about the axis. A surface has
circular symmetry about an axis when it is a surface of revolution about the axis.

8See note on page 5.
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1 d?T 1 (d?R 1dR
( ) . (5)

o AT dt? ~ R\ dr?2 " rdr

The second member of (5) does not involve ¢, therefore its equal the first member
must be independent of ¢. The first member of (5) does not involve r, and
consequently since it contains neither ¢ nor r, it must be constant. Let it equal
—u?, where p of course is an undetermined constant.

Then (5) breaks up into the two differential equations

d*T 2 9

ﬁ+,uCT:O (6)
d?R 1dR

+-— + R =0. (7)

dr2 oy dr

(6) can be solved by familiar methods, and we get T' = cos uct and T = sin uct
as simple particular solutions (v. Int. Cal. p. 319, § 21).
To solve (7) is not so easy. We shall first simplify it by a change of indepen-

dent variable. Let r = . (7) becomes
]

d’R 1dR
WJFEE*FR—O. (8)

Assume, as in Art. 9, that R can be expressed in terms of whole powers of
x. Let R =" a,z™ and substitute in (8). We get

Sn(n —1)a,2" 2 + na,z™ 2 + a,2™] = 0,

an equation which must be true no matter what the value of z. The coefficient
of any given power of x, as ¥~2, must, then, vanish, and

k(k —1)ag + kag + a—2 =0
or Kap 4+ ax_2=0
whence we obtain ap—o = — k2ay (9)

as the only relation that need be satisfied by the coefficients in order that R =
3" apz* shall be a solution of (8).

If k=0, ar_o=0, ar_4=0, &c.
We can then begin with £ = 0 as our lowest subscript.
From (9) ap = —GZ;Q.
Then as = f%
ao
= 92 g
ag
%=~ p g &
2 4 6
Hence R=ag|1-— z x x

2 tep ppetT
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where ap may be taken at pleasure, is a solution of (8), provided the series is

convergent.
Take agp = 1, and then R = Jy(x) where

x? x? 28 8

Jo(z) =1~ 92 + 22 42 9242 62 T 2242 62.82

(10)

is a solution of (8).
Jo(z) is easily shown to be convergent for all values real or imaginary of z,
since the series made up of the moduli of the terms of Jy(x) (v. Int. Cal. Art. 30)

’f‘2 7"4 ’f‘6

e tepteget

where r is the modulus of z, is convergent for all values of r. For the ratio of

the n + 1st term of this series to the nth term is and approaches zero as

2
its limit as n is indefinitely increased, no matter what the value of r. Therefore
Jo(z) is absolutely convergent.

Jo(z) is a new and important form. It is called a Bessel’s Function of the
zeroth order, or a Cylindrical Harmonic.

Equation (8) was obtained from (7) by the substitution of z = ur, therefore
(ur)? | (pr)t — (ur)°

2 Tap T npe

R=Jy(ur)=1-

is a solution of (7), no matter what the value of y, and z = Jo(ur) cos uct or
z = Jo(ur) sin pct is a solution of (4).

z = Jo(pr) cos uct satisfies condition (2) whatever the value of p. In order
that it should also satisfy condition (3) p must be so taken that

Jo(pa) = 0; (11)

that is, p must be a root of (11) regarded as an equation in .

It can be shown that Jy(z) = 0 has an infinite number of real positive roots,
any one of which can be obtained to any required degree of approximation
without serious difficulty. Let x1, x2, x3, - -- be these roots. Then if

Z1 T2 Zs3
7:/1’17 72#27 - :/‘1’37 &C'
a a a

z = AyJo(par) cos pict + A Jo(par) cos pact + AzJo(uzr) cos psct +- -+, (12)

where Ay, As, As, &c., are any constants, is a solution of (4) which satisfies
conditions (2) and (3).
When t =0 (12) reduces to

z = Aljo(,ul’/‘) + AQJO(,LLQT) + A3J0(,U,37’) + - (13)

If then f(r) can be expressed as a series of the form just given, the solution of
our problem can be obtained by substituting the coefficients of that series for
Al) AQ, Ag, &C., in (12)
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EXAMPLE.

The temperature of a long cylinder is at first unity throughout. The convex
surface is then kept at the constant temperature zero. Show that the tempera-
ture of any point in the cylinder at the expiration of the time ¢ is

w= Are” M Jo(unr) + Ase™ 13 Jo (ugr) + Aze= "M o (ugr) + -+
where py, pe, &c., are the roots of Jy(uc) = 0, and where
1= AyJo(prr) + Az Jo(par) + AzJo(usr) +-- -,

¢ being the radius of the cylinder.

12. Each of the five problems which we have taken up forces upon us the
consideration of the development of a given function in terms of some normal
form, and in two of them the normal form suggested is an unfamiliar function.
It is clear, then, that a complete treatment of our subject will require the inves-
tigation of the properties and relations of certain new and important functions,
as well as the consideration of methods of developing in terms of them.

13. In each of the problems just taken up we have to deal with a homo-
geneous linear partial differential equation involving two independent variables,
and we are content if we can obtain particular solutions. In each case the as-
sumption made in the last problem, that there exists a solution of the equation
in which the dependent variable is the product of two factors each of which in-
volves but one of the independent variables, will reduce the question to solving
two ordinary differential equations which can be treated separately.

If these equations are familiar ones their solutions can be written down at
once; if unfamiliar, the device used in problems 3 and 5 is often serviceable,
namely, that of assuming that the dependent variable can be expressed as a
sum or series of terms involving whole powers of the independent variable, and
then determining the coefficients.

Let us consider again the equations used in the first, second and third prob-
lems.

(a) D2u+ Df/u =0 (1)
Assume u = X.Y where X involves x but not y, and Y involves y but not x.
Substitute in (1), YD2X + XD]Y =0,
or, since we are now dealing with functions of a single variable,

1 d?X  1d%Y
Xd? " YaE
1d%Y  1d*X @
Y dy? X dz?’

0,

or
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Since the first member of (2) does not contain z, and the second member
does not contain y, and the two members must be identically equal, neither of
them can contain either z or y, and each must be equal to a constant, say 2.

a2y

Then — —a’Y =0 3
dy2 ( )
2 X

and if (3) and (4) can be solved, we can solve (1). They have for their complete
solutions

Y = Ae®Y + Be™ Y
and X =Csinax + Dcosax. (v. Int. Cal. p. 319, § 21.)

Hence Y = e® and Y = e~ *¥ are particular solutions of (3), X = sinax and
X = cos ax are particular solutions of (1), and consequently

u=e%Ysinaxr, u=e“Ycosar, u=e¢ “Ysinazxr, and u=e Y cosax
are particular solutions of (1). These agree with the results of Art. 7.
(b) Diy=a*D3y (1)

Assume y = T.X where T is a function of ¢ only and X a function of x only;
substitute in (1) and divide by a?TX. We get

1 T 1 dPX @)
a?T dt2 X dz?’

2

hence as in the last case is a constant; call it —a?, and (2) breaks up

) X da?
mto
22X
w + 0¢2X =0 (3)
2T
—m +a%a®T =0. (4)

The complete solutions of (3) and (4) are

X = Asinax + Bcosazx
and T = Csinaat + Dcosaat, (v. Int. Cal. p. 319, § 21).

y = sin ax cos aat, y = sinax sin aat, y = cos ax cos aat, y = cos ax sin aat

are particular solutions of (1), and agree with the results of Art. 8.

(¢) rDX(rV) + .1 HDg(sin 0DyV) = 0. (1)

S11
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Assume V = R.© where R involves r alone, and © involves 6 alone; substi-
tute in (1), divide by R.©, and transpose; we get

r dz(TR) B 1 d(bln@%) )

R dr? ~ ©sing  do @
Since by the reasoning used in (a) and (b) each member of (2) must be a
constant, say a2, we have

d*(rR)

_ 2
il R (3)
d
. d(smed—?) .

d =0. 4
an sng  ap  T@O=0 )
(3) can be expanded into

d’R dR
2 2p _
TW-FQTE—QR—O. (5)
(5) can be solved (v. Int. Cal. p. 321, § 23), and has for its complete solution
R = Ar™+ Br",
where m=—1+4/a®+7 and n=-1-,/a®+1.
Hence n = —m — 1, and o2 may be written m(m+1), m being wholly arbitrary;

and

R = Ar™ 4 Br—m 1,

1
R=7r", and R= sy
are, then, particular solutions of
d’R dR
2 _
With the new value of a? (4) becomes
d
1 d(sin 9—6)
40/ | p(m +1)0 = 0. (7)

sin 0 do

which has been treated in Art. 9 for the case where m is a positive integer, and
the particular solution © = P,,(cosf) has been obtained.

Hence V =r"P,(cosb)
1
and V= um (cos9),

m being a positive integer, are particular solutions of (1). The first of these was
obtained in Art. 9, but the second is new and exceedingly important.
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14. The method of obtaining a particular solution of an ordinary linear
differential equation, which we have used in Articles 9 and 11, is of very extensive
application, and often leads to the general solution of the equation in question.

As a very simple example, let us take the equation Art. 13 (a) (4), which we
shall write P2

z
) +a?z =0. (1)

Assume that there is a solution which can be expressed in terms of powers
of x; that is, let z = Y a,a™, where the coefficients are to be determined.
Substitute this value for z in (1) and we get

S [n(n — Dayz™ 2 + a2ayz™] = 0.

Since this equation must be true from its form, without reference to the value
of z, that is, since it must be an identical equation, the coefficient of each power
of x must equal zero, and we have

(n+1)(n+2)any2 + a?a, = 0;
1 2
whence an = —%anﬁ
Q
is the only relation that need hold between the coefficients in order that z =
>~ anz™ should be a solution of (1).
Ifn+2=0o0orn+1=0, a, will be zero and a,_2, a,_4, &c., will be zero.
In the first case the series will begin with ag, in the second with a;.

042

(mntDn+2)"™

Ap+4+2 = —

If we begin with ag we have

a? at al
az = —jam a4 = ana ag = _aa(h &e., -
2,2 4,4 6,.6
ocx ot alx
and z=uag <1 51 + 1 ol +) (2)
or z = apcos ax (3)

is a particular solution of (1).
If we begin with a; we have

and z=a1(z—ax y2 27 —|—> (4)
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is a solution of (1); a; can be taken at pleasure. Let a1 = «, (4) becomes

0[3(E3 a5x5 OZ7LC7
+

or z =sinazx
which, then, is a particular solution of (1).
z = Asinax + B cos ax (5)

is, then, a solution of (1), and since it contains two arbitrary constants it is the
general solution.

15. As another example we will take the equation

d?z dz
2802 4 9 %% 1)z = 1
SR + T m(m+1)z =0, (1)

which is in effect equation (6), Art. 13 (¢), and let m be a positive integer.
Assume z = Y a,2™ and substitute in (1). We get

Yn(n+1) —m(m+ 1)]apz™ = 0.
This is an identical equation, therefore
[n(n+1) —m(m + 1)]a, = 0.
Hence a,, = 0 for all values of n except those which make
nn+1)—m(m+1) =0,
that is, for all values of n except n = m and n = —m — 1. Then
z = Az™ + Bx~™! (2)

is the general solution of (1) and

1

xm—i—l

z=z2" and z=

are particular solutions. If m is not a positive integer this method will not lead
to a result, and we are driven back to that employed in Art. 13 (c¢).

16. Let us now take the equation

% [(1 —xz)jﬂ +m(m+1)z=0 (1)

which is in effect equation (4), Art. 9, and is known as Legendre’s Equation. (1)

may be written

d? d
Z 2wy m(m+ 1)z =0. (2)

— 2 —_—
(1-z )dx2 dx
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Assume z = Y a,z™ and substitute in (2). We get

S{n(n — 1V)a,z" =2+ [m(m + 1) — n(n + 1)]a,z"} = 0.
Hence (n+1)(n+2)apte + [m(m+1) —n(n+ 1)]a, =0,

(n+1)(n+2)
m(m+1)—n(n+1

or ay, = —

)an+2. (3)

If a,, = 0, then a,,_2 =0, a,_4 =0, &c.; but a,, =0 if n = -2 or n = —1. For
the first case we have the sequence of coefficients

_ m(m+1)
az——Tao
“ :m(m—2)(m+1)(m+3)a
4 m 0
a6:_m(mfZ)(mfél)(qu1)(m+3)(m+5)a0’ Se.

6!

Let us take ag, which is arbitrary, as 1. Then z = p,,(x) where

o) = |1 - m(Tr;!Jr 1)302 n m(m — 2)(TZ!+ 1)(m+3)x4 o (@)

is a solution of Legendre’s Equation if p,,(x) is a finite sum or a convergent
series.
For the second case we have the sequence of coefficients

_ (m—1)(m+2)
az = — 0 a

3!
_(m—=1)(m —3)(m+2)(m +4)
4= 51 “
__(m=1)(m —=3)(m —5)(m +2)(m +4)(m + 6) &
ar ai, c.

7!

Let us take ay, which is arbitrary, as 1. Then z = ¢, (z) where

am(2) = |z — (m — 1;(!m+2)x3 N (m — 1)(m—3)5(!m+2)(m+4)x5 _ )

is a solution of Legendre’s Equation if ¢,,(z) is a finite sum or a convergent
series.

If m is a positive even whole number, p,,(z) will terminate with the term
containing x™, and is easily seen to be identical with

LG

(_1) I‘(m—i— 1) m

(x). [v. Art. 9 (9)]



INTRODUCTION. 21

For all other values of m, p,, () is a series.
The ratio of the (n+ 1)st term of p,,, () to the nth, when m is not a positive
even integer, is
2n—2-m)2n—14+m) o
(2n —1)(2n)

Its limiting value, as n is increased, is 22, and the series is therefore convergent
if =1 <z < 1. It is divergent for all other values of z.

If m is a positive odd whole number ¢,,(z) will terminate with the term
containing x™, and is easily seen to be identical with

2 [r(2 )]
m 2 P

T(m+1) m(2)-

(=1)

For all other values of m, ¢,,(x) is a series, and can be shown to be convergent
if -1 <z <1, and divergent for all other values of z.

2z = Apm(x) + Bgm(z) (6)

is the general solution of Legendre’s Equation if —1 < z < 1, no matter what
the value of m. From Art. 13 (¢) it follows that

V =1"pmn(cosf)

V= mpm(cos )

V =1"¢n(cos0)

V= (cos )

Tm+1 Qm

are particular solutions of

rD2(rV) + si%De (sinfDyV') = 0,
no matter what the value of m, provided cos 6 is neither one nor minus one.
In the work we shall have to do with Laplace’s and Legendre’s Equations, it
is generally possible to restrict m to being a positive integer, and hereafter we
shall usually confine our attention to that case.
With this understanding let us return to (3), which may be rewritten

(m—n)(m+n+1)
(n+1)(n+2)

Ap4+2 = — Qp,.

If Gnto =0, then a4 =0, anq6 =0, &c;

but Gnto =0 if n=m, or n=—m—1.
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If in (3) we begin with n = m — 2, we get the sequence of coefficients already
obtained in Art. 9, and we have z = P,,(z), where

2m-1)2m -3)---1| ,, m(m-1) , _
Pule) =1 )(m! ) ‘ _Q(ém—l))m 2
m(m — 1)(m — 2)(m — 3)
2.4.(2m — 1)(2m — 3)
m(m — 1)(m — 2)(m — 3)(m — 4)(m — 5)

_ 2.4.6.(2m — 1)(2m — 3)(2m — 5) PPN I (8)

as a particular solution of Legendre’s Equation.
If, however, we begin with n = —m — 3, we have

(m+1)(m+2)

m—4

A—m-3 = 2(2m +3) A—m—1
_ (m+1)(m+2)(m+3)(m +4)
A—m—5 = 2.4.(2m + 3)(2m + 5) A_m—1
a _ (m+1)(m +2)(m +3)(m +4)(m +5)(m +6) .
—m—7 = 2.4.6.2m +3)(2m +5)(2m +7) —m—15 :
m!

a_p,,—1 may be taken at pleasure, and is usually taken as
m—1 May P Y 1.35.---(2m + 1)’

and z = Q,,(x) where
m! 1 (m+1(m+2) 1
em+1)2m—1)---1 [gm*+] 2.2m+3) amt3

Qm (.’,U) -

(m+1)(m+2)(m+3)(m+4) 1
* 2.4.2m+3)(2m +5) xm+5 T (9)

is a second particular solution of Legendre’s Equation, provided the series is

convergent. @, (z) is called a Surface Zonal Harmonic of the second kind. Tt is

easily seen to be convergent if x < —1 or x > 1, and divergent if —1 <z < 1.
Hence if m is a positive integer,

z = APy, (z) + BQm(z) (10)

is the general solution of Legendre’s Equation if x < —1 or x > 1.
We have seen that for —1 < x < 1

m I'(m+1)

= (5]

Pule) = (—1) — LD (12)

2 (%]

Pr(2) = (=1)

5Pm(7) (11)

if m is an even integer, and
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if m is an odd integer.
If now we define @,,,(z) as follows when —1 <z < 1

("))
mp1 2

pm () (13)

if m is an odd integer, and

TG +))

I'(m+1)

Qm(z) = (=1) qm () (14)

if m is an even integer, then (10) will be the general solution of Legendre’s
Equation if m is a positive integer when —1 < x < 1, as well as when « < —1
or x > 1.

17. Let us last consider the equation

d’z  1dz m?
i 1— — =0 1
dx2+xdaj+< xQ)Z (1)
which is known as Bessel’s Equation, and which reduces to (8) Art. 11, that is,

to
d?z 1dz

de? ' zdx
when m = 0;° (1) can be simplified by a change of the dependent variable. Let
z =2™v and we get

+2z=0

@+2m+1dl
dx? r dx

+v=0 (2)

to determine v.
Assume v = Y a,2", and substitute in (2). We get

Sn(2m + n)anz™ 2 + a,x™] = 0;

whence ap—2 = —n(2m + n)a,.

If we begin with n = 0, then a,,_2 =0, a,_4 = 0, &c., and we have the set of
values
ao - ao
22m+2)  22(m+1)

a9 =

~2402m+ 20)(2m T4)  282(m +01)(m +2)

ay4

9This equation was first studied by Fourier in considering the cooling of a cylinder. We
shall designate it as “Fourier’s Equation.”
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— aO J— aO .
YT T 462m+2)2m+ 4)(2m+6)  203(m+ 1)(m+2)(m +3)°
2 4
whence z=aqagr™ |1 — x v

2(m+ 1) 220(m+ 1)(m+2)

26

2631 (m+ 1) (m+2)(m+3

)_|_... (3)

1
is a solution of Bessel’s Equation. ag is usually taken as Sl if m is a positive
'm!

integer, or as if m is unrestricted in value, and the second member

1
2mT(m + 1)
of (3) is represented by J,,, () and is called a Bessel’s Function of the mth order,
or a Cylindrical Harmonic of the mth order.

If m =0, Jp,(z) becomes Jy(x) and is the value of z obtained in Art. 11 as
the solution of equation (8) of that article.

If in equation (1) we substitute 2~ ™wv in place of z™wv for z, we get in place
of (2) the equation
d>v  1-2mdv

@—’_ T dx+v:O

and in place of (3)

z? x?

= -m 1 —
=T ot 21 —m) 221 —m)(2—m)

6

26311 —m)(2—m)(3 —m)

+ ... (4)

1
If ap is taken equal to m

function of —m and x that J,,(z) is of +m and x and may be written J_,,(x).

the second member of (4) is the same

Therefore z=Adp(z) + BJ_p(x) (5)

is the general solution of (1) unless J,,(x) and J_j,(x) should prove not to be
independent.
It is easily seen that when m =0, J_,,(z) and J,,(z) become identical and
(5) reduces to
z=(A+ B)Jo(x)

and contains but a single arbitrary constant and is not the general solution of
Fourier’s Equation (8) Art. (11).

It can be shown that J_,,(x) = (—1)™J,,(x) whenever m is an integer, and
consequently that the solution (5) is general only when m if real is fractional or
incommensurable.
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The general solution for the important case where m = 0 is, however, easily
obtained. Let F(m,x) be the value which the second member of (3) assumes
when ap = 1; then the value which the second member of (4) assumes when
ag = 1 will be F(—m,x), and it has been shown that z = F(m,z) and z =
F(—m,x) are solutions of Bessel’s Equation; z = F(m,x) — F(—m,z) is, then,
a solution, as is also

F(m,z) — F(—m,x)

= 6
z 5 ; (6)
F — F(—
but the limiting value which (m, 2) 5 (=m, 2) approaches as m approaches
m

zero is [Dp F(m, z)]m=o and consequently
Z = [DmF(myx)]mzo (7)
is a solution of the equation

d’z  1dz

and the general solution of (8) is

z = AJy(z) + B[Dpm F(m, z)]m=o-

z? x?

m+ 1) - 24.2l(m +1)(m + 2)

F(m,z) = 2™ {1 -

6

~ 26.31(m + 1)(m + 2)(m + 3) A }
a2 at }

D F(m,z) = 2™ logz |1 — .
(m,z) == ng{ P+ 1) | 252(m+ D(m+2)

1‘2 3’}4
D |1 — i
I { Pm+l) A mAm+2) }

The general term of the last parenthesis can be written
2k

(_1)k22k.k!(m +1)(m+2)---(m+Ek)’

and its partial derivative with respect to m is

X 1’2k 1

(=" gz i Pom (m+1)(m+2)---(m+k)

1
log i = —[log(m + 1) +log(m +2) + - -
(m+ 1){m +2)-- (m +) + log(m + k)].
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Take the D,, of both members and we have
1
Dy,
(m+1D(m+2) - (m+k)

1 1 1 1
__mﬁﬁxm+mumm+m[m+1+m+2+”ﬁn+J'
2 4 6
D [1_

x x x
] x? 1 xt 1 { 1 1 ]
+...

2(m+1) 2 2Am At D(m+2)  203m+ 1)(m +2)(m +3)
:272(m+1)2 © 2021 (m 4 1)(m +2) m+1+m+2

28 1 { 1 1 1 }

2631 (m 4+ 1)(m + 2)(m + 3) m+1+m+2+m+3
and we have

2?1 zt 1 1
[Dy F(m, )| m=0 = Jo(x)logz + 2112 1 2 212 (1 + 2)

Lo (1t 1y e /1 1 1 1y
2302\1 2" 3) 28anz\1 2 3" 1 ’

+

and z = AJy(z) + BKy(z), (9)
z? zt 11
where  Kor) = Jo(a)loga + 55 — i (1 n 2)

24(21)2

26302 \1 2 3) 28(41)?

)
123 4
is the general solution of Fourier’s Equation (8)
Ky(z) is known as a Bessel’s Function of the Second Kind.

18. It is worth while to confirm the results of the last few articles by
getting the general solutions of the equations in question by a different and
familiar method.

The general solution of any ordinary linear differential equation of the second
order can be obtained when a particular solution of the equation has been found
[v. Int. Cal. p. 321, § 24 (a)].

The most general form of a homogeneous ordinary linear differential equation
of the second order is 2 p

Y Y
de—i—de—i-Qy—O (1)
where P and @ are functions of x. Suppose that

y=v (2)

is a particular solution of (1). Substitute y = vz in (1) and we get

d’z dv dz
—-— 2— + Pv | — =0.
Vdz? + ( dx + v) dx 0 (3

N
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d
Call 22 = 2/, Then (3) becomes
dx
‘flz <2jlv + Pv) Z =0, (4)

a differential equation of the first order in which the variables can be separated.
Multiply by dx and divide by vz’ and (4) reduces to

d—z+2@+de—o

Integrate and we have

logz’+logv2+IPda: =C

12 _ C—[Pdz — [Pda
JPde _ o= [Pdx

or Zvt=e
, dz e~ [ Pdz
2 = — = s
dx v2
dex
z=A+ BJ ¢ dz;
de:L’
and y= U(AJrBfe dx> (5)

is the general solution of (1), the only arbitrary constants in the second member
of (5) being those explicitly written, namely, A and B.

(a) Apply this formula to (1) Art. 14,

d2

d2+az—0 (1)

given: z = cosax, as a particular solution. Substituting in (5) we have since

P=0

z—cosa:c<A+Bj 5 >
cos? ax

B
= cos ax (A + —tan ax)
o
= Acosaz + By sinaz, (2)
as the general solution of (1), and this agrees perfectly with (5) Art. 14.

(b) Take equation (1) Art. 15.

2£+2d —m(m+1)z=0; (1)
dx? dz 7

given: z =z, as a particular solution.
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2 1
Here P = —, de:z: =2logz = log#?, and e~ JPdr = — . Hence by (5)
x x

m dw m B 1
e (A+Bjx2m+2):$ (A+2mla:2m+1)7

. m , Bi
that is z= Az™ + sy (2)

is the general solution of (1), and agrees with (2) Art. 15.

(¢) Take Legendre’s Equation, (2) Art. 16.

d?z dz
) —Qx%—i—m(m—i—l)zzo; (1)
given: z = P, (z), as a particular solution.

_ _ 2 — [Pdx _
HereP—m,dex—log(l—m ), and e =

(1-a?)

1
1—a22

Hence by (5) z = Pp(x) <A + BJ 1- x;)i[ajpm(x)]?) (2)

is the general solution of (1) and must agree with (10) Art. 16, if m is an integer,

and therefore p
Qnl@) = CPule) | Ty 3)

where C'is as yet undetermined, and no constant term is to be understood with
the integral in the second member.

(d) Take Bessel’s Equation, (1) Art. 17.

d?z n 1dz + (1 m?2 0
e, 24 MY, o
dz?2 =z dx x? ’

—~
—_
~

given: z = J,,,(x), as a particular solution.

1 1
Here P = —, IPdm =logz, and e~ /P4 = Z Hence by (5)
x x

2= J() <A+stc[J;b(gx)]2>

is the general solution of Bessel’s Equation.
If m =0 (2) becomes

dx
2= Jo(x) <A+BIW> (3)

and must agree with (9) Art. 17. Therefore

—~
DN
~

Ko(x) = CJo(z) f w[(];ia)]ga
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where C is at present undetermined, and no constant term is to be taken with
the integral.

The first considerable subject suggested by the problems which we have
taken up in this introductory chapter is that of development in Trigonometric
Series (v. Arts. 7 and 8).
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CHAPTER II.

DEVELOPMENT IN TRIGONOMETRIC SERIES.

19.  We have seen in Chapter I. that it is sometimes important to be able
to express a given function of a variable x, in terms of the sines or of the cosines
of multiples of . The problem in its general form was first solved by Fourier in
his “Analytic Theory of Heat” (1822), and its solution plays a very important
part in most branches of modern Physics. Series involving only sines and cosines
of whole multiples of z, that is series of the form

bo + by cosx +bycos2x +---+aysinx + assin2x + - - -

are generally known as Fourier’s series.

Let us endeavor to develop a given function of z in terms of sinz, sin 2z,
sin 3z, &c., in such a way that the function and the series shall be equal for all
values of x between z =0 and x = 7.

To fix our ideas let us suppose that we have a curve,

y= f(z),
given, and that we wish to form the equation,
Yy =a1sinx + agsin2zx + azsin3zr + - - -,

of a curve which shall coincide with so much of the given curve as lies between
the points corresponding to z = 0 and x = m. It is clear that in the equation

y = aisinx (1)

a; may be determined so that the curve represented shall pass through any
given point. For if we substitute in (1) the coérdinates of the point in question
we shall have an equation of the first degree in which a; is the only unknown
quantity and which will therefore give us one and only one value for a;.

In like manner the curve

Yy = aysinx + ag sin 2x

may be made to pass through any two arbitrarily chosen points whose abscissas
lie between 0 and 7 provided that the abscissas are not equal; and

Yy = a1 sinx + agsin 2z + agsin3x + - - - + a,, sinnx

may be made to pass through any n arbitrarily chosen points whose abscissas
lie between 0 and 7 provided as before that their abscissas are all different.

If, then, the given function f(x) is of such a character that for each value
of x between x = 0 and = = 7 it has one and only one value, and if between
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x =0 and z = 7 it is finite and continuous, or if discontinuous has only finite
discontinuities (v. Int. Cal. Art. 83, p. 78), the coefficients in

y = a1 sinx + ag sin2x + agsin3x + - - - 4+ a, sinnx (2)

can be determined so that the curve represented by (2) will pass through any n
arbitrarily chosen points of the curve

y = f(x) (3)

whose abscissas lie between 0 and 7 and are all different, and these coefficients
will have but one set of values.

For the sake of simplicity suppose that the n points are so chosen that their
projections on the axis of X are equidistant.

Call % = Axz; then the codrdinates of the n points will be [Az, f(Ax)],
n
[2Az, f(2Az)], [3Az, f(BAZ)], - -+ [nAx, f(nAz)]. Substitute them in (2) and

we have
f(Az) = a1sinAx+ agsin2Az + agsin3Az+---+ ap,sinnAzx
f(2Az) = a1 sin2Ax 4+ agsindAx + agsin6Az + -+ - + a, sin2nAzx
f(BAZ) = a1 sin3Ax 4+ assinb6Ax + azsin9Az + -+ - + a, sin 3nAzx (4)

f(nAz) = a1 sinnAx + as sin 2nAzx + agsin 3nAz + - - - + a, sin n’Ax,

n equations of the first degree to determine the n coefficients aq, as, az, -+ an,-
Not only can equations (4) be solved in theory, but they can be actually
solved in any given case by a very simple and ingenious method due to Lagrange.
Let us take as an example the simple problem to determine the coefficients
ai, as, as, ag, and as, so that

Yy = aq sinx + ag sin 2x + ag sin 3z + a4 sin 4x + as sin 5z (5)

shall pass through the five points of the line

y=x
27 3w 4 5
which have the abscissas %7 %, ’%, %, and %, % here being Azx.

We must now solve the equations

T . + .27 + . 3T + .o 4r + Yy
— = qsin — sin — sin — 4+ a4sin — + assin —

6 ap Sl 6 ag Sl 6 a3 S11 6 4 S1 6 5 SI 6
21 . 2w + 4w n . b + .87 + . 107
— =aysin — + azs8in — + azsin — + a4sin — + assin —
6 76 TP 6 76 176 76
3T . 3T n . 6w + . 97 n . 127 n . 1om (6)
— = aysin — + az8in — 4+ azsin — + a4 Sin — + a5 sin —
6 6 T 6 7 6 76 76
47 . 4m n . 8w n . 127 n . 16w n . 207
— = aps8in — + ag8in — 4+ agsin — + a4 Sin — + a5 sin ——
6 U6 T e T g 76 76
51 . o n . 107 n Y n . 207 n . 25w
— = a1 8in — + ag sin — 4+ a3 sin — + a4 sin — + a5 sin —.
6 U6 PTG 776 76 76
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2
Multiply the first equation by 2sin %, the second by 2sin %, the third by

3 4 5
2 sin —ﬂ-, the fourth by 2sin g, the fifth by 2sin Fﬂ and add the equations.

The coefficient of ag is

Lo 2T L 2w . 4w . 3w . 6w o 4dm . 87w
2sin — sin — + 28in — sin — + 2sin — sin — + 2sin — sin —
6 6 6 6 6 6 6 6
. 57 . 107w
sin — sin —;
6 6’
2
but 2sin = sin “X = cos = 700531,&(:.
6 6 6 6
Hence the coefficient of as becomes
s n 2w n 3 n 47 n %8
COS — + COS —+ C0S — + €08 — + CoS —
6 6 6 6 6 (7)
) 3 ‘ 6m ] 97 ‘ 127 ) 157
cos 5 Cos 5 cos 5 cos 5 cos 5

and this may be reduced by the aid of an important Trigonometric formula
which we proceed to establish.

20. LEMMA.

1 sin(2n + 1) 4

cosf + cos20 + cos30 + - - - +cosnf = —— + 2, (1)

2 2 .
sin —
2

For let S = cos @ + cos 20 + cos 360 + - - - + cosnf and multiply by 2 cos¥6.
25 cosf = 2cos® 6 + 2cos 0 cos 20 + 2 cosf cos 30 + - - - + 2 cos § cos nf
=14 cosf +cos20+ -+ cos(n—1)0
+ cos 20 + cos 30 + cos460 + - - - + cos(n + 1)0
=25+ 14 cos(n+1)§ — cosf — cosnb. Hence

1 cosnf —cos(n+1)60

S=—=
2 + 2(1 — cos 6)
0
or 52—5“!‘570 Q.E.D

sin —
2

21. Applying (1) Art. 20 to (7) Art. 19 the coefficient of as reduces to

117 . 337
sin —  sin —
12 12 .
2sin —  94in 3r
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11
but i:ﬂ'—17 andggizgﬂ-figi;
12 12 12 12
(e ) o)
sin (m— — sin (371 — — 1 1
therefore 12/ 12/ _ -~ _ 0,
2sin —— 2¢i 3m 2 2
12 sin -5

and ay vanishes.
In like manner it may be shown that the coefficients of as, a4, and a5 vanish.
The coefficient of ag is

2 3 4 5
9 sin? % + 2sin? % + 2sin? % +2sm2f7T —|—2sin2%

=1 + 1 + 1 + 1 + 1

2w 47 61 8w 107
—COS?—COS?—COS?—COSF—COS?
117w . s
e )
2 oo 2 oom

251116 231116

The first member of the final equation is

27r,7r+227r_27T+237r_37r+247r_47r+257r_57r H
——sin — ~—— sin — — sin — — sin — — sin —. ence
6 M6 T M T M T M T 6 .
k=5
2 k k
alsz —Wsin—ﬂ-:ﬁ@—&—\/?)):? approximately.

64~6 6 6

2
If we multiply the first equation of (6) Art. 19 by 2sin g, the second by
4 1
2sin —W, the third by 2 sin 61, the fourth by 2sin 8%, the fifth by 2 sin %, add
and reduce as before we shall find
= kr 2km

2 . s
GQZE;FSIHT —6\/3:_097

and in like manner we get

k=5
2 kr . 3km o«
=G G g =0
k=1
2 b dkn /3
a4_6 E 76 SIHTZ—?:_O?’
k=1
k=5
2 km . bkm o«
a5:6§ r s1nT=g(2—\/3):O'1'
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Therefore
y =2sinz — 0.9sin 2z + 0.5sin 3z — 0.3sin4x + 0.1sin 5x (1)
2 3w 4
cuts the curve y = x at the five points whose abscissas are %, g, %, g, and

om
=

22. The equations (4) Art. 19 can be solved by exactly the same device.
To find any coeflicient a,, multiply the first equation by 2 sin mAx, the second
by 2sin 2mAz, the third by 2sin 3mAz, &c. and add.

The coefficient of any other a as aj in the resulting equation will be

2sin kAz sin mAx + 2 sin 2kAx sin 2mAx + 2sin 3kAx sin 3mAx + - - -
+ 2sin nkAx sin nmAx
= cos(m — k)Ax + cos2(m — k)Ax + cos3(m — k)Ax + - -+ + cosn(m — k) Az

—cos(m + k)Axz — cos2(m + k)Ax — cos3(m + k)Ax — - -+ — cosn(m + k) Az
sin 2n2+ ! (m—k)Az  sin 2n2+ L (m+k)Azx
B . (m—k)Az . (m+k)Azx ; by (1) Art. 20.
2sin ———— 2sin ————
2
2 1 1
n2—|— :n—&—l—i and (n+1)Az = .
Hence the coefficient of a; may be written
—k)A A
sin [(m — k) — W} sin {(m +k)m— W
2sin L 2T —Zk)Ax 2sin 7(m —|—2k)A:r

1 1 1 1
but this is equal to 573 or —3 + 3 according as m — k is odd or even and so

is zero in either case.
The coefficient of a,, will be

2sin? mAz + 2sin? 2mAzx + 2sin? 3mAz + - - - + 2sin? nmAzx

= 1 + 1 4+ 1 + - + 1
— cos 2mAx — cos dmAx — cosbmAx — -+ — cos2nmAzx
1 sin(2n+ 1)mAz
= - — 2 by (1) Art. 20.
ne 2 2sinmAzx y (1) Ar

But (2n 4+ 1)mAz = 2m(n + 1)Ax — mAxz = 2mm — mAx,

sin(2n + 1)mAz  sin(2mn — mAzx) 1
therefore - = - =%
2sin mAx 2sin mAx 2
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and the coefficient of a,, is n + 1.
The first member of our final equation will be

k=n
2 Z f(kAz)sin kmAz.
k=1
Hence
9 k=n
m = = Z f(kAx) sin kmAwx, (1)
k=1
and the curve
y = aisinx + ag sin2x + - - - + a, sin nzx, (2)
where the coefficients are given by (1) will pass through the n points of the
curve y = f(x) whose abscissas are Az, 2Ax, 3Azx, --- nAz. Az being %
n

It should be noted that since the n equations (4) Art. 19 are all of the first
degree there will exist only one set of values for the n quantities a1, a2, as, - --
a, that can satisfy these equations. Consequently the solution which we have
obtained is the only solution possible.

23.  The result just obtained obviously holds good no matter how great a
value of n may be taken.

If now we suppose n indefinitely increased the two curves (2) Art. 22 and
y = f(x) will come nearer and nearer to coinciding throughout the whole of
their portions between z = 0 and x = 7, and consequently the limiting form
that equation (2) Art. 22 approaches as n is indefinitely increased will represent
a curve absolutely coinciding between the values of  in question with y = f(x).

Let us see what limiting value a,, approaches as n is indefinitely increased.

k=n
2 .
m = ];1 f(kAx) sin kmAx (1) Art. 22.
k=n
= M?m Z f(kEAz) sin kmAx

k=1
2 | f(Az)sinmAz.Az + f(2Az) sin2mAz. Az + - -
T + f(nAz) sinnmAx.Ax
2 | f(Az)sinmAz.Az + f(2Az)sin2mAz. Az + - -
o +f(m — Az)sinm(r — Az). Az

since Az = —

n+1
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As n is increased indefinitely Az approaches zero as a limit. Hence the
limiting value of a,, as n increases indefinitely is

f(Az)sinmAz. Az + f(2Az) sin2mAz. Az + - -

2 imit 1
T Alinilo +f(m — Azx)sinm(r — Az). Az
2 T
= fff(x) sinmz.dx. [v. Int. Cal. Arts. 80, 81.]
T
0
Hence f(z) = aysinz + as sin 2x + agsin3x + - - - | (2)

where any coefficient a,, is given by the formula

T

A = %jf(x) sin mz.dz, (3)
0

is a true development of f(z) for all values of x between x = 0 and z = 7
provided that the series (2) is convergent, for it is in that case only that we
can assume that the limiting value of the second member of (2) Art. 22 can be
obtained by adding the limiting values of the several terms.

When = = 0 and when z = 7 every term in the second member of (2) is
zero, and the second member is zero and will not be equal to f(z) unless f(x)
is itself zero when & = 0 and x = 7; but even when f(z) is not zero for z = 0
and x = 7 the development given above holds good for any value of x between
zero and 7 no matter how near it may be taken to either of these values.

24. Instead of actually performing the elimination in equations (4) Art. 19
and getting a formula for a,, in terms of n, and then letting n increase indefi-
nitely, we might have saved labor by the following method.

Return to equations (4) Art. 19 and multiply the first by Az sinmAz, the
second by Az sin2mAx, and so on, that is multiply each equation by Ax times
the coefficient of a,, in that equation, and then add the equations.

We get as the coefficient of ay,

sin kAz sin mAz. Az + sin 2kAx sin 2mAx.Ax + - - - + sin nkAx sin nmAx.Ax.

Let us find its limiting value as n is indefinitely increased. It may be written,
since (n 4+ 1)Az = m,

limit sin kAx sin mAx.Ax + sin 2kAx sin 2mAx. Az + - - -
Arto +sink(m — Az) sinm(m — Az).Ax

s
= J sin kx sin mx.dx;
0

1We shall use the sign = for approaches. Az = 0 is read Az approaches zero.
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but jsin krsinmz.dr = 4 f[cos(m — k) — cos(m + k)z]dx
0 0

= 0 if m and k are not equal.
The coefficient of a,, is
Az(sin® mAz + sin? 2mAz + sin 3mAz + - - - + sin® nmAxz).

Its limiting value

limit | sin? mAz. Az + sin® 2mAz. Az + - - - + sin® m(r — Az)Az
Az=0

s
. T
= fst mx.dr = —.
) 2

The first member is
f(Az)sinmAz.Ax + f(2Az)sin 2mAx. Az + - - - + f(nAz) sinmnAz. Az

and its limiting value is

f(x)sinmaz.dz.

Ot

Hence the limiting form approached by the final equation as n is increased
is

f(z)sinmaz.dx = gam.

Oy

U

2
Whence A = — f f(z) sinmz.dx as before.
T
0

This method is practically the same as multiplying the equation
f(z) =arsinz + agsin2x + azsin3x + - - - (1)

by sinmx.dx and integrating both members from zero to .

It is exceedingly important to realize that the short method of determining
any coefficient a,, of the series (1) which has just been described in the italicized
paragraph, is essentially the same as that of obtaining a,, by actual elimination
from the equations (4) Art. 19, and then supposing n to increase indefinitely,
thus making the curves (3) Art. 19 and (2) Art. 19 absolutely coincide between
the values of x which are taken as the limits of the definite integration.
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25.  We see, then, that any function of z which is single-valued, finite,
and continuous between x = 0 and x = 7, or if discontinuous has only finite
discontinuities each of which is preceded and succeeded by continuous portions,
can probably be developed into a series of the form

f(x):GISin$+azsin2x+a3sin3x+... (1)
here fo( ) si d 2jrf( ) si d (2)
wher O = — x)sinmz.de = — o) sinma.da;

™ X

and the series and the function will be identical for all values of x between x = 0
and x = m, not including the values x = 0 and z = 7 unless the given function
is equal to zero for those values.

An elaborate investigation of the question of the convergence of the series
(1), for which we have not space, entirely confirms the result formulated above?
and shows in addition that at a point of finite discontinuity the series has a
value equal to half the sum of the two values which the function approaches as
we approach the point in question from opposite sides.

The investigation which we have made in the preceding sections establishes
the fact that the curve represented by y = f(z) need not follow the same
mathematical law throughout its length, but may be made up of portions of
entirely different curves. For example, a broken line or a locus consisting of
finite parts of several different and disconnected straight lines can be represented
perfectly well by y = a sine series.

26. Let us obtain a few sine developments.

(a) Let flx) == (1)
We have x =a;sinx + agsin2x + azsin3x + - - - (2)
where U, = — j x sinmae.dz (3)

™
0
: 1.
Ix sinmz.dr = — (sinma — mzx cos mz),
m
™ _1 m
fa:sinmx.dx = —M,
m

0

and

sinx sin2x sin3x  sindx
= 2 e 4
T ( - 5t Tt ) (4)

2Provided the function has not an infinite number of maxima and minima in the neighbor-
hood of a point. v. Arts. 37-38.



DEVELOPMENT IN TRIGONOMETRIC SERIES. 39

(b) Let flz)=1. (1)
2 s
A = — f sin mx.dx; (2)
o
. cos mx
fsm mx.dr = — ,
m

s 1 1
i .dx = —(1 — cos =—[1-(-1)™
Ojblnmx x m( cosmm) m[ (=)™
=0 if m is even

2
= — if m is odd.
m

4
Hence 1=— (

T T st (3)

sinx sin3x sinbxr sinT7x
T

It is to be noticed that (3) gives at once a sine development for any constant
c. It is,

(4)

4c <sinx sin3xz  sinbz )
c= — +o ).

1+3+5

™

If we substitute z = g in (4) (a) or (3) (b) we get a familiar result, namely

7:777+57?+”" (5)

a formula usually derived by substituting 2 = 1 in the power series for tan™! .
(v. Dif. Cal. Art. 135.)

(4) (a) does not hold good when z = 7, and (3) (b) fails when = = 0 and
when z = 7, for in all these cases the series reduces to zero.

c) Let x:xfrom:z::()toa::zand
(c) Tet J(2) .

f(z)=m— 2z from z = g to x = m. That is, let
y = f(x) represent the broken line in the figure.

As the mathematical expression for f(x) is
different in the two halves of the curve we must
break up

Oy

f(z)sinmaz.dx into jf(x) sinma.dx + f f(z) sinma.dx.
0 3
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We have, then,

2 7 2 ¢
= ! xsinma.dr + - ﬂj(w — z)sinmz.dx (1)
4
= sinm—
m2m 2
But sinm%:l if m=1 or 4k+1
=0 ¢ m=2 “ 4k+2
=—1¢ m=3 ¢ 4k+3
=0 “ m=4 “ A4k

Hence if y = f(z) represents our broken line,

4 (sinx sindx sindr sinTx
f(x)_w<12 Ty T T m +) @)
When x = g flz) = g and we have

ol i1 (3)
8 12 32 52 72

(d) As a case where the function has a finite discontinuity, let

f(z)=1 from z=0 to x:g and
fley=0 « x:% “ r=m.

y = f(x) will in this case represent the locus in the figure.
As before ¥

NIE]

f(z)sinmaz.de = ff(x) sin ma.dx

Oty

MH%:‘ o

+ | f(z)sinmz.dz. ¢ - X
9 2 2 ¢
= Ofsmmx.dm + = JO.smmx.dm. (1)
Z

2 H 1 s
— dxr = — (1— 7).
7Tofsmmx T Cosm2
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But cosmZ = 0 if m=1 or 4k+1
=—1 “ m=2 ¢ 4k+2
0 ¢« m=3 “ 4k+3
1 ¢« m=4 “ A4k,
Hence
F@) = 2 (sinz 2sin2z sindx sindx 2sin6xr  sinTx
UeF 2 3 5 6 7
T 1
If x = — the second member of (2) reduces to 2 for
2/1 1 1 1 1
S 4 - 4. )== b b):
ﬂ<1 il ) Loy () )

and we see that the series represents the function completely for all

41

) @)

values of

x between x = 0 and x = 7 except for x = g and there it has a value which

7r
is the mean of the values approached by the function as = approaches 3 from

opposite sides.

EXAMPLES.

Obtain the following developments:—

2 [/ m? 4 72 2 4
27 = s = . o« ~ = . o
(1) =z F{<1 13)smx 5 81n2x+<3 33)81n3x
2 4)
+< sin5x-«l
5 53
2[/x® 6r 7 6w 7 6m
3_ = a0 . o a2 . a0
(2) =z 7T|:<1 13>smx (2 23>51112x—|—<3 33
7 6m
2|sinz m sin3z 27w sin Hx
3) flz)= 71-[ B ﬁsto: 22 4—2$1n4x w2
3T
+ — sin 6z —
62 }’

iff(a:)zxfromsztox:gandf(a:):()fromx:%tox:ﬂ.

w2
— sindx
4
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(4) . 2 . sinx 2sin 2z n 3sin3x 4 sin4x
sin uxr = — sin um — —
H p H 12— p2 222 U322 422

if p is a fraction.

211 2 3
(5) e*==|=(1+€")sinx+ (1 —¢€")sin2z+ —(1 + ¢€™)sin 3z
w2 ) 10

4
+(1—e”)sin4x+---}.

17
2sinh7 |1 2 3 4
(6) sinhx = Sli W[Qsinx—5sin2x+losin3x—Nsin4x—|—--- .

201 2
(7) coshzx = — [2(1 + cosh ) sinz + 5(1 — cosh 7) sin 2z
T

3
+ m(1+cosh7r)sin3x+---}

27.  Let us now try to develop a given function of x in a series of cosines.
As before suppose that f(x) has a single value for each value of x between
xz = 0 and x = 7, that it does not become infinite between x = 0 and =z = ,
and that if discontinuous it has only finite discontinuities.
Assume
f(z) = by + by cosx + bz cos2x + bz cos 3x + - - - (1)

To determine any coefficient by, multiply (1) by cos ma.dx and integrate each
term from 0 to 7.

jbo cosmz.dr = 0.
0

by,

ka cos kx cosmz.dx = 5 [cos(m — k)z + cos(m + k)x]dx

0

O

= 0 if m and k are not equal.

b
f by, cos® ma.dx = 2—m(mx + cos mz sinmz),
m

me cos? mz.dx = gbm, if m is not zero.
0
Hence b = 2 jr f(z) cosmz.dx = 2 f f(a) cos ma.da (2)
"o J o J R

if m is not zero.
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To get by multiply (1) by dz and integrate from zero to .

bodl’ = boﬂ',

by coskx.dx = 0.

Hence

o
(=}
|
=
K
N—
j=%
=
I
=
—
=
2
QL
R

(3)

3|

Oty Oy Oy

which is just half the value that would be given by formula (2) if zero were
substituted for m.
To save a separate formula (1) is usually written

f(x) = 3bo + by cosx + by cos 2z + bz cos 3z + - - - (4)
and then the formula
2 [ f(a) cosmade = 2 | fla) cosma.d 2
= — x)cosmx.de = — a) cos ma.da
o o

will give by as well as the other coefficients.
It is important to see clearly that what we have just done in determining
the coefficients of (1) is equivalent to taking n + 1 terms of (4), substituting in

yz%bo—|—blcosx+b2c052x+~-~+bncosnx (5)

in turn the codrdinates of the n + 1 points of the curve

y = f(z)

whose projections on the axis of X are equidistant, determining by, by, bo, - - - by,
by elimination from the n + 1 resulting equations, and then taking the limiting
values they approach as n is indefinitely increased. (v. Art. 24.)

If Ae = —— the abscissas of the n + 1 points used are 0, Az, 2Ax, 3Ax,

- nAz, so that we should expect our cosine development to hold for z = 0 as
well as for values of x between zero and 7.

28. Let us take one or two examples:

(a) Let fla) =z, 1)
2 7 2 72
bo:;ijde;TZW
2 P 2 2 m
by = ;fxcosmx.dx = o (cosmm — 1) ﬂ[(_ )" = 1]
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(2)

0 T 4 n cos 3 n cos dx n cosTx n
ence r=——— [cosx ).
2 7 32 52 72

(2) holds good not only for values of x between zero and = but for x = 0
and x = 7 as well, since for these values we have

(A S A (3)
2 o7 32 52 72
T 4 1 1 1
and ’/T:2+7T(1+32+52+72+"') (4)
which are true by Art. 26 (¢)(3).
(b) Let f(z) =xsinz. (1)

s

2 2
by = ffxsinm.dx =—7m =2,
™ ™

2 ¢ r 1
b1 = ;Ofxsinxcosx.dx = ;Ixsian.dm =-3

0
™

2 ¢ 1
by = — fxsinxcos mx.de = — f[J? sin(m + 1)z — xsin(m — 1)z|dx
™ o

2
=———— ifmisodd
(m—1)(m+1)
=—————— if miseven.
(m—1)(m+1)
Hence
xsinx_l_cosac_20052x+20053a:_2cos4x+ (2)
N 2 1.3 2.4 3.5
Ifx:gwe have
T 1 1 1 1
Ty - 3
4 2+1.3 3.5+5.7 (3)
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EXAMPLES.

Obtain the following developments:

m  2|cos2x cosbxr coslOxr cosldx + }

(1) flz)= 47r{ 2 T TTm tr

if f(x):xfromx:()tox:gandf(x)zwfxfromx:gtox:ﬂ.

@ J@=3+2T ~ 3 T 7

1 2fcosxz cos3z cosbxr cosTx n
T 3
. ™ 7r
if f(x):lfromsztoxziandf(x)zOfromx=§tox=7r.

2
9 T cosx cos2xr cosdx  cosdx
@)x_3_4p'_? Ty T T
3 6 2 4 2 2 4
(4) 2= % - {(7{2 - 14) cos T — g—Qcos2x+ <73j2 - 34> cos 3z

w2 7t 4
7ECOS4I+ (5254> cos5x~l,

m 2| (m 2 1 /37
— — 7_1 3 _ 12 _ | 1 S
(5) f(z)= 8+ {(2 )cosx 52 C0s 2T 32<2 + )cosSx

1/5 2
+52<;—1)cos5x—62c056x—-~-},

if f(x):xfromx:()tox:gandf(x)zOfromx:gtoac:ﬂ'.

211 1 1
(6) == [(e7T —-1) - m(e’r +1)cosz + 1+722(6ﬂ— —1)cos2x

(e’r+1)cos3x+~~],

1432
2¢inh7w [1 1 1 1
(7) coshx = Sl; 77{2—2<:osar:+5c03235—10cos33:

1
— cosdp — - -
+ 17cos T ],
211 1
(8) sinhax = — {2(cosh7r —-1)— §(cosh7r +1)cosx
™

1 1
+ g(coshwf 1) cos2x — E(COShﬂ'+ 1)cos3x +--- |,

2usinpumr | 1 cos T cos 2x cos 3x
9 = -0 — — —
(9)  cosuz - {2M2 2 — 12 +M2—22 12— 32
cos4zx
u2—42 P

if p is a fraction.
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29. Although any function can be expressed both as a sine series and as
a cosine series, and the function and either series will be equal for all values of
x between zero and 7, there is a decided difference in the two series for other
values of x.

Both series are periodic functions of  having the period 27. If then we let
y equal the series in question and construct the portion of the corresponding

curve which lies between the values * = —7 and z = 7 the whole curve will
consist of repetitions of this portion.
Since sinmxz = —sin(—maz) the ordinate corresponding to any value of x

between —7 and zero in the sine curve; will be the negative of the ordinate
corresponding to the same value of x with the positive sign. In other words the
curve

Yy = aisinx + ag sin 2x + az sin3x + - - - (1)

is symmetrical with respect to the origin.

Since cosma = cos(—max) the ordinate corresponding to any value of x
between —m and zero in the cosine curve will be the same as the ordinate
belonging to the corresponding positive value of x. In other words the curve

y:%bO+blcOSI+bgCOSQI+b3(ZOS3x+..‘ (2)

is symmetrical with respect to the axis of Y.

If then f(z) = —f(—=x), that is if f(z) is an odd function the sine series
corresponding to it will be equal to it for all values of x between —7 and ,
except perhaps for the value x = 0 for which the series will necessarily be zero.

If f(x) = f(—=), that is if f(x) is an even function the cosine series corre-
sponding to it will be equal to it for all values of x between r = —7 and =z = ,
not excepting the value z = 0.

As an example of the difference between the sine and cosine developments
of the same function let us take the series for z.

sin2x sin3x  sindz
— 9 |gingr — _ ..
Yy [smx 5 + 3 1 ] (3)
T 4 + cos 3x + cos br + cos7x + (4)
= — — — |cosx e
Y97 32 52 72

[v. Art. 26(a) and Art. 28(a)]. (3) represents the curve




DEVELOPMENT IN TRIGONOMETRIC SERIES. 47

and (4) the curve

Both coincide with y = « from x = 0 to = 7, (3) coincides with y = x from
x = —m7 to x = m, and neither coincides with y = x for values of x less than —m
or greater than 7. Moreover (3), in addition to the continuous portions of the
locus represented in the figure, gives the isolated points (—m,0) (w,0) (37,0)
&ec.

30. We have seen that if f(x) is an odd function its development in sine
series holds for all values of z from —7 to 7, as does the development of f(x)
in cosine series if f(z) is an even function.

Thus the developments of Art. 26(a), Art. 26 Exs. (2), (4), (6); Art. 28(b),
Art. 28 Exs. (3), (7), (9) are valid for all values of « between —7 and 7.

Any function of z can be developed into a Trigonometric series to which it
is equal for all values of z between —7 and .

Let f(x) be the given function of z. It can be expressed as the sum of an
even function of x and an odd function of x by the following device.

oy = LS | f0) = S "
identically; but W is not changed by reversing the sign of x and is

f(x) = f(=7)

is affected only to the extent of having its sign reversed and is consequently an
odd function of x.
Therefore for all values of x between —7 and 7

therefore an even function of x; and when we reverse the sign of z,

— 1
M = 5(70 + by cosx + by cos 2x + b3 cos 3x + - - -

2 ¢ -

where bm = — J M cosmz.dx; and
Ty 2

f(@) —Qf(—x) = a1 sinx + agsin2x + azsindx + - - -

2 ¢ — f(~

where A = fj f@) -~ f sinmax.dx.
T 2
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b and a,, can be simplified a little.

cos mx.dx

2 7 f(x)+ f(-a)
bm = wof2

™ ™

[ [ 1(a)conmad+ [ (=) cos mx.dx] ,

1
™
but if we replace x by —z, we get

K

ff(—x) cosmz.de = — ]Wf(:v) cosmx.dx = fo f(x) cosmaz.dx,

0 0 -

1 T
and we have by = — f f(x) cosmaz.dx.
m

In the same way we can reduce the value of a,, to

K

! ff(x) sin mz.dz.

™

Hence
1
fz) = 5[)0+blcosm+bgcos2m+bgcos?>m+--~
+aysinx + assin2x + agsin3x + - - -
here b ! fﬂf(:c) cos mz.dx ! fﬂf(a) cos ma.da
w m = — r.dr = — da.
7T*Tr ﬂ-fﬂ'
1 ¢ : I :
and A = — j f(x)sinmz.de = — j f(a) sinma.da.
7T_7T 7(-—71'

and this development holds for all values of z between —7 and .
The second member of (2) is known as a Fourier’s Series.

48

EXAMPLES.
1. Obtain the following developments, all of which are valid from x = —=
tox =m—
2 sinh 1 1 1 1 1
(1) e*= Sl; T [2 - icosm—&— 5C082.’L‘— Ecosi’)x—i— 170084x+-~-}

. 2 . 9% + 3 . 3 4 . g+
5 SNz — osin 2z 4 Josindr — o sindx

2sinh 7 {1

|
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™ 2 cos3r cosbxr  cosTx
(2) f(m):4—7r{cosx—|— 22 T T
+sinx sin2x+sin3x sin4m+
1 2 3 4 ’
where f(x) =0 from 2 = —7 to x = 0 and f(z) =z from z =0 to « = 7.
171 2 1 1
(3) f(x)z—?ig—i—ﬂ_{lzcosx—&-2200523:—&—32005335—&—5200553:
2
+@cosﬁx+'~
1[/3m . 3 . 3m 1 .
+; ?—1 blnx—zbuﬂx—i— €+372 sin 3z
3 3 1
—gsin4x+(lg—52>sin5x—--},
where  f(z) =z from x = —7 to x = 0, f(m):Ofromxzotoa::g,
and f(x)zx—gfromm:gtox:m

2. Show that formula (2) Art. 30 can be written

flz) = %co cos By + ¢1 cos(x — B1) + ca cos(2x — Ba) + c3cos(3x — B3) + - - -

1 Gm

where Cm = (a2, + b?n)% and (3, = tan -

3. Show that formula (2) Art. 30 can be written

flx) = 1co sin By + ¢ sin(z + B1) + cosin(2x + B2) + ¢ sin(3z + f3) + - -

2
where Cm = (a2, + bfn)% and (3, = tan~! -
am
31. In developing a function of x into a Trigonometric series it is often
inconvenient to be held within the narrow boundaries + = —m and x = 7. Let

us see if we cannot widen them.
Let it be required to develop a function of x into a Trigonometric series
which shall be equal to f(x) for all values of & between © = —c and z = c.
Introduce a new variable

e
z = —ux,
c
which is equal to —m when x = —c and to 7 when x = c.

flx)=7f (Ez) can be developed in terms of z by Art. 30 (2), (3), and (4).
™
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‘We have
1
f (Ez) = §b0 + by cosz + by cos2z + bz cos3z + - --
T

+ ay1sinz + assin2z + agsindz + - - -

1 ¢ c
where by, = ;j f (;z) cosmz.dz. (2)
and Gy = 1 f f <Ez> sinmz.dz (3)
m T T P T . .
and (1) holds good from z = —7 to z = 7.

Replace z by its value in terms of x and (1) becomes

1 2 3
f(a:):fbo—&—blcoslx—i—bgcosﬂ—i—bgcosﬂ+~--
2 c c c (4)

. T . 2nx . 3mx
+a;sin — + agsin — 4 agsin —— + - - -
c c c

The coefficients in (4) are the same as in (1), and (4) holds good from x = —c¢
tox =c.
Formulas (2) and (3) can be put into more convenient shape.

17 c 1 mrx m
b = ;_fﬂ f (;z) cosmz.dz = ;_fa f(zx) cos . zd:z:
1 ¢ mnx 1 mmA
or b = E_fc f(zx) cos . dx = E_fc f(X) cos dA. (5)
In like manner we can transform (3) into
1 . mmx 1 ¢ .ommA
Ay = E_fp f(z)sin p dx = E_‘[ f(A) sin . dA. (6)

By treating in like fashion formulas (1) and (2) Art. 25 and formulas (4) and
(2) Art. 27 we get

2
f(x):alsinﬂ+a231nﬂ+agsm37j+,“ (7)
& C Is
2 ¢ . mmx 2 ¢ Cma
where O = onf(;z:)sm p dr = - !f(A) sin — A (8)
and f(x):*b0+blcosﬁ+bgcosﬂ+bgcosﬂ+... 9)
2 . - ;
where bm = gf ) cos " = 2 f 7O cos T2 gy (10)
m — CO c = CO B .

and (7) and (9) hold good from z =0 to x = c.
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EXAMPLES.

1. Obtain the following developments:

4  wx 1 . 3mx 1 . brx
(1) 1=—|sin—+—-sin— + —sin— +---
™ c 3 c 5 c

from x =0 to x = c.

@) x:%[' 7z 1 . 27x 1 . 3nx 1 . 4rnz

T 2 c 3 c 4 c
from x = —ctox =c.
ad":—{cos7T +70537T75€+i b57r7x+i
T c 32 52 72
from x = —ctox =c.

5 22 [(7* 4\ . mx 7w | 2mx 72 4
(3) 2°=— T T sin— — —sin— 4+ [ — — —
7r c

fromx=0tox=c
o 2 4 mr 1 2rx 1 drz 1
= — — — =

3 2

from x = —ctoxz =c.
x:2ﬂ[1+ec . omx 2(1—ef) . 27z

02+7r28n? c2+47r2s c
31+e€°) . 3mz  4(1—e€°) . 4dmzx
- Zsin— 4+ ———ZLsi
c2 + 92 c 2 4 1672
_ lec—1 e +1 7r:£+ e —1 2rx
=2¢|=—— - ———Ccos— + ———— Ccos —
2 2 c? 4 72 c c? 4 472 c
e‘+1 CO‘37T$+
c2 + 92

fromx =0tox =c.

4 1 3 1 5
(5) f($):7r(2:[sinm_32$inzx+5zsin?+...:|

from z =0 to x = ¢,

Wheref(:v):mfromx:Otom:gandf(x):cfxfrornx:gtox:c.

sin — — —sin — + —sln —— — —sln — +
c

— €08 —— + —= C0S —— — — COS
22 c 32 c 42

n7+...
C

|
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2. Show that formula (4) Art. 31 can be written

1 T 2mx
f(z) = 560 cos 3y + ¢y cos (c — ﬁ1> + ¢9 cos (c — ﬁg)
3
+ c3 cos (?—ﬂg) + -

_1 Gm

where Cm = (a2, + b?n)% and [, = tan T
m

3. Show that formula (4) Art. 31 can be written

1 2
flx) = 500 sin By + ¢ sin <7rcx + 61) + ¢o sin <7cm + ﬁ2>

. 3rx
+ c3sin ?—Fﬂg + -
where em = (a2, +b2)7 and B, =tan"' %.
m

32. In the formulas of Art. 31 ¢ may have as great a value as we please, so
that we can obtain a Trigonometric Series for f(z) that will represent the given
function through as great an interval as we may choose to take. If, then, we can
obtain the limiting form approached by the series (4) Art. 31 as ¢ is indefinitely
increased the expression in question ought to be equal to the given function of
x for all values of z. Equation (4) Art. 31 can be written as follows if we replace
bo, b1, ba, - -+ a1, ag, -+ by their values given in Art. 31 (5) and (6).

=[5 i

¢ A T - 2T A 2mx
—&—_J; f) cos — cos Td/\ —|—_£ f) cos — — cos ?d/\—k e

C C

c C
A 2N . 2
+If(/\)sinﬂ-csinixd)\—l—jf()\)sin7rsinmd)\—i—---}

1 ¢ 1 A A
:jf(A)d)\[2+cos7Tcosm+sin7Tsinm
¢, c c c c

2T\ 2mx L2 . 27z }
+ c0s —— c0S —— +sin ——sin —— + - - -
c c c c
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1 ¢ 1 ™ 27
flx) = c_fcf()\)d)\[2 +cosg()\—x) +0057(/\—m) +]

:21cff()\)d)\[l—l—cos:()\—x)+cos2:()\—x)+~-~
+cos(—7CT)()\—ac)+cos(—2:)()\—ac)+--~]

since cos(—¢) = cos ¢.

flx) = % f f) d)\[---+ %cos(—%)(z\—x) + %cos(—%)()\ — )

—l—zcoso—?r(/\—a:)—i—zcosz()\—x)
c c c c
m 2m
+Ccosc(/\—:v)+---} (1)

As ¢ is indefinitely increased the limiting value approached by the parenthesis
in (1) is
o0

f cos (A — x).da.

— 00

Hence the limiting form approached by (1) is
17 ®
f(x) = %_f fN) d)\_j cosa(A — z).da, (2)

and the second member of (2) must be equal to f(z) for all values of x.

The double integral in (2) is known as Fourier’s Integral, and since it is a
limiting form of Fourier’s Series it is subject to the same limitations as the
series.

That is, in order that (2) should be true f(z) must be finite, continuous,
and single valued for all values of z, or if discontinuous, must have only finite
discontinuities.?

(2) is sometimes given in a slightly different form.

00 0 [eS)
Since f cosa(A — z).da = j cos (A — x).da + fcos a(A—z).da
oo oo 0
and
0 0 0
j cosa(\ — z).da = jcos(—oz)(A —2).d(—a) = —jcosa(A e
f cosa(A — z).da =2 f cosa(A — z).da
—00 0

3See note on page 38.
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and (2) may be written

f(z) = % f [ dAjcosa(A — z).dov. (3)
—00 0

If f(x) is an even function or an odd function (3) can be still further simpli-

fied.

Let f(2) = —f(~a).

Since the limits of integration in (3) do not contain « or A the integrations
may be performed in whichever order we choose. That is

oo oo

j FON) dA j cosa(\ — z).da = Tdoz T FOV) cosa(\ — z).d\.
—0o0 0 0 —0o0

Now
0 0 [e)
j f(A) cosa(A—z).d\ = f f(A) cosa(A —z).d\+ ff()\) cosa(A — x).dA.
% oo 0
j FO) cosa(h — z).d\ = jf(—A) cosa(—\ — z).d(—\)

I
|
OHS
~
—
=
(@)
O
)
2
>
+
o
a
>

and (3) becomes

Tdoz Tf(/\)[cos a(A —x) —cos (A + x).dA
0o 0

== |d A) sin ) si A\
7‘-‘0[ aff( ) sin @A sin ax

[=)

o0

or flx) = ff(/\)d)\fsin asin az.da. (4)
0 0

3w

If f(z) = f(—=) (3) can be reduced in like manner to

oo

flz) = % Tf()\) d\ j cos aA cos ax.do. (5)
0 0

Although (4) holds for all values of z only in case f(z) is an odd function,
and (5) only in case f(x) is an even, function, both (4) and (5) hold for all
positive values of = in the case of any function.
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EXAMPLE.

(1) Obtain formulas (4) and (5) directly from (7) and (9) Art. 31.
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CHAPTER III.

CONVERGENCE OF FOURIER’S SERIES.

33. The question of the convergence of a Fourier’s Series is altogether
too large to be completely handled in an elementary treatise. We will, however,
consider at some length one of the most important of the series we have obtained,
namely

[v. (3) Art. 26(b).]

41 . sin 3x + sin bx + sin 7x
Z lsin -
3 5 7 ’

and prove that for all values of x between zero and 7 its sum is absolutely equal
to unity; that is, that the limit approached by the sum of n terms of the series

2 T s s
— [sinx f sin a..da + sin 2mjsin 2a.da + sin 3x j sin 3a.do + - - } ,
0

0 0 0

as n is indefinitely increased, is 1, provided that = lies between zero and 7.
Let

s T s

2
S, = —|sinz j sin oe.dov + sin 2x f sin 2a.do + sin Sxfsin 3a.da+ - -
T
0 0 0
+ sinnzx f sin na.da} . (1)
0
Then
2 U
Sp = — j[sin asinx + sin 2asin 2z + sin 3asin 3z + - - - + sinna sin nzldo
™
0
1 e
= ,j [cos(a — ) — cos(a + x) + cos2(a — x) — cos2(a+x) + - -
™
0
+ cosn(a — x) — cosn(a + x)] da
1 ™
=— j[cos(a — ) +cos2(a—x) +cos3(a—2x)+ -+ cosn(a — z)]da
™
0
1 s
- = j[cos(a + )+ cos2(a+x) +cos3(a+x)+ -+ cosn(a+ x)]da.
7r
0
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Therefore by Art. 20 (1)

-z
™ 151n2n+1)
ﬂf{ a—a:2 }da
0 sin
2
177 1 psin(2n+1) —2|—x
T {_2 2 . a+tx ]da.
0 sin
2
T a+x

. @ — .
. 1 7rSln(27’L+1)Td 1 Esin(2n+1)
"_QWI . a—x a_gwf . atz
0 sin — 0 sin —5

2 do.

-
, and in the second integral sub-

o
In the first integral substitute § for

stitute 3 for ate
We get
T __Z I+1
1 ?¢%sin(2n+1 1 2¢%sin(2n+1
So=t [ LG, LoD, )
T J sin 8 T J sin 3
-2 2

It remains to find the limit approached by S,, as n is indefinitely increased.

- f sin@n+ 18 5 _ T (1)
J sin 3 27
For
in(2 1
w =1+ o823+ cosdB + - - - + cos 2nf3, by Art. 20.
2sin
z
and jcos 2kp.d3 = 0.
0

Let us construct the curve

sin(2n + 1)z

Y= :
sinx

We have only to draw the curve y = sin(2n 4+ 1)z and then to divide the
length of each ordinate by the value of the sine of the corresponding abscissa.

In y = sin(2n + 1)z the successive arches into which the curve is divided by
the axis of X are equal, and consequently their areas are equal.
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Each arch has for its altitude unity and for its base
T

2n+1
of its highest or lowest point.

and is symmetrical with respect to the ordinate

sin(2n + 1)z

sin
the curve y = sin(2n + 1)z, it is clear that, since sinz

If now we form the curve y = from

increases as x increases from 0 to E7 the ordinate of
any point of the new curve will be shorter than the
ordinate of the corresponding point in the preceding
arch, and that consequently the area of each arch y =
sin(2n + 1)x
. sinz
1t.

If ag, a1, as, - --a,_1 are the areas of the successive
arches and a,, that of the incomplete arch terminated

™
by the ordinate corresponding to x = —

will be less than that of the arch before

sin(2n + 1)z

- dr=ay—a;+az—as+---.
sinx

o

But

fsin (2n+1)x dm:fsin@n—i—l)ﬁ
J sin J

Hence

o3

or
™ e
§:a0—a1—|—a2—a3+a4—-~-—an if n is odd.
These equations can be written

T
5= ag + (—a1 + az) + (—as + aq)
+(—as +ag) + -+ (—an-1 +an)

if n is even, and

T
5= ap + (—a1 + az) + (—as + aq)

. . 0
=ag—a;+ay—az+aqs—---+a, ifniseven, =

1+ ug

q)oso=fi

T —
pA

(g 79208

+(—as +ag) + -+ (—an—2 + an-1) + (—an)

if n is odd.

58
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In either case each parenthesis is a negative quantity since
ag >ap > az > az- - > Gy,

and it follows that aq is greater than g
Again
™

5:aO_a'1+(a2_a3)+(a4_a5)+"'+(an72_anfl)+an

if n is even and
g:ao—a1+(a2—a3)+(a4—a5)+---+(an,1—an)
if n is odd.

In 7;either case each parenthesis is positive and it follows that ag — a; is is less
than 5

Since -
ag > 5 > ag — ag,
ag and ag — ap differ from g by less than they differ from each other, that is,
by less than a;.
In like manner we can show that ag — a1 and ag — a1 + ao differ from g by

m
less than as; and in general that ag — a1 + as — ag + - - - £ ay, differs from 3 by
less than ay; or even that

a
a()—al-‘1-(12—@3—1--~-if]~C

T
differs from 5 by less than aj no matter the value of p, provided p is greater

than unity.
35. From what has been proved in the last article it follows that

f sin(2n + 1)x

sinx

dx,

where b is some value between and g, differs from g by less than the

sin(2n + 1)z

2n+1
area of the arch in which the ordinate of y = corresponding to

sin x
x = b falls if this ordinate divides an arch, or by less than the area of the arch
next beyond the point (b,0) if the curve crosses the axis of X at that point.

The area of the arch in question is less than QL—i-l’ its base, multiplied by
n
1

- , a value greater than the length of its longest ordinate.
sin (b — )
o ( o+ 1
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; sin(2n + 1)x

Therefore j . dz
sin x
1
differs from ~ by less than il = .
2 TR PN (.
2n+1

If now n is indefinitely increased

u h
approaches zero
20+ T (p- )
2n+1
as its limit, and we get the very important result

b
.. sin(2n + 1)z i
1 - = — 1
ﬁr—ng[f sin x dx} 2 (1)
. ™
ifo<b< 7"
17 Fsn@n+ 18 17 Psin2n+1)8
s zn S zn
_1 =z . [Art. 33. (2
36. Sn = 0 df — — sug W [Art. 33. (2)]

This last value for S,, can be somewhat simplified.
Substituting v = — we get

0 . 0 . 3 .
sin(2n + 1)43 sin(2n + 1 sin(2n + 1)43

[ R LG TR Y L R

A sin 8 J sin -~y 5 sin 3
-2 2

Substituting v =7 — § in
ERE
1
sin@n+ 16 we hiave

sin 3

[NE]
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(am@nt s, Ftsnrly o f sin@er D
J sin B 4 sy z g2 sin 3
S z 272
%sin2n+1ﬂ %_gsin2n+1ﬁ
e
J sin 3 sin 3

SWZZfSin(Q?z—i—l)ﬁdﬁ_i_Z jgsin(2n—|—l)ﬁdﬁ_2fsin(2n+1)ﬁdﬁ.
o T o

sin 3 sin 3 sin 3
2 . 2 1
i sin@n+ 1)B 5 _ 7 by (1) Art. 34.
0 sin 8 2
3 . 9 1
limitUWdﬁ}:ﬁ if 0<z<m by (1) Art. 35
n=oo s s1nﬁ 2
and
=5 . 9 1
limit{ | Wdﬂ} =2 i 0o<a<n by (1) Art. 35.
n=oo s smﬁ 2
Therefore limit[S,] =1+1-1=1 if O<z<~ and
4| . sin3z  sinbxr  sinTx
— |sinz + + + 4+l =1
m 3 5 7

for all values of x between zero and 7.

37. By a somewhat long but not especially difficult extension of the
reasoning just given it can be shown that if f(z) is single-valued and finite
between z = —m and x = m, and has only a finite number of discontinuities and
of mazima and minima between x = —m and x = 7 the Fourier’s Series

1
ibo+blcosx+b2c052x+bgcos3x+~~

+ ay;sinx + assin2x + azsin3x + - - -

1 s
where Um = — f f(a) sinma.da
g -

s

1
and by = — f f(a) cosma.da,

™
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and that Fourier’s Series only is equal to f(z) for all values of x between z = —7
and x = 7, excepting the values of x corresponding to the discontinuities of f(x),
and the values m and —= if f(7) is not equal to f(—m); and that if ¢ is a value
of z corresponding to a discontinuity of f(x), the value of the series when x = ¢
is

%limit[f(c —€)+ flc+e)l;

e=0
and that if f(7) is not equal to f(—m) the value of the series when z = —7 and
when ¢ = 7 is )
Slf(=m) + F(m)].

If f(z) while satisfying the conditions named in the preceding paragraph
except for a finite number of values of x, becomes infinite for those values, the
series is equal to the function except for the values of x in question provided

that j f(z)dz is finite and determinate.  (v. Int. Cal. Arts. 83 and 84.)

—T

38.  The question of the convergency of a Fourier’s Series and the condi-
tions under which a function may be developed in such a series was first attacked
successfully by Dirichlet in 1829, and his conclusions have been criticised and ex-
tended by later mathematicians, notably by Riemann, Heine, Lipschitz, and du
Bois Reymond. It may be noted that the criticisms relate not to the sufficiency
but to the necessity of Dirichlet’s conditions.

An excellent résumé of the literature of the subject is given by Arnold Sachse
in a short dissertation published by Gauthier—Villars, Paris, 1880, entitled “Es-
sai Historique sur la Représentation d’une Fonction Arbitraire d’une seule vari-
able par une Série Trigonométrique.”

39. A good deal of light is thrown on the peculiarities of trigonometric
series by the attempt to construct approximately the curves corresponding to
them.

If we construct y = a3 sinz and y = agsin 2z and add the ordinates of the
points having the same abscissas we shall obtain points on the curve

Yy = aysinx + ag sin 2x.

If now we construct y = agsin3z and add the ordinates to those of y =
a1 sinx + as sin 2x we shall get the curve

Yy = a1 sinx + a9 sin 2x 4 ag sin 3.
By continuing this process we get successive approximations to
Yy = a1 sinx + as sin 2x 4+ ag sin3x + a4 sindx + - - -

Let us apply this method to a few of the series which we have obtained in
Chapter II.
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Take
. 1. 1.
yzsmx—&—gsm3x+gsm5x—|—-~- (1)

=0 when x =0, %fromsztox:ﬂ, and 0 when x = 7,

v. Art. 26 [b](3).

3

=z fromx =0toxz ==, and 0 when z = 7,

1 1 1
y:2<sinx—2sin2x+sin3x—4sin4m+-~-) (2)

Art. 26 [a](4).
411 1 1 1
y—ﬂ_{psinxgzsini%:chgﬁsinE\z72sin7x+~} (3)

T T
:xfromx:Otox:§, andﬂ'fxfromzzitoa;:W7

Art. 26 [c](2).

1 2 1 1 2 1
Y= Isinx—k 5sin2x—|— gsin3x+ gsin51:— ésinﬁx—k ?sin7x—|—~~~ (4)

=0 when x =0, gfromx:Otox:g, andOfromx:gtox:w,

v. Art. 26 [d](2).

It must be borne in mind that each of these curves is periodic having the
period 27, and is symmetrical with respect to the origin.

The following figures I, II, III, and IV represent the first four approximations
to each of these curves.

In each figure the curve y = the series, and the approximation in question
are drawn in continuous lines, and the preceding approximation and the curve
corresponding to the term to be added are drawn in dotted lines.
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Figs. I, II, III, and IV immediately suggest the following facts:

(a) The curve representing each approximation is continuous even when the
curve representing the series is discontinuous.

(b) When the curve representing the series is discontinuous the portion of
each successive approximate curve in the neighborhood of the point whose ab-
scissa is a value of x for which the series curve is discontinuous approaches more
and more nearly a straight line perpendicular to the axis of X and connecting
the separate portions of the series curve.
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III g v

(¢) The curves representing successive approximations do not necessarily
tend to lose their wavy character, since each is obtained from the preceding one
by superposing upon it a wave line whose waves are shorter each time but do
not necessarily lose their sharpness of pitch. This is the case in Figures I, II,
and IV. In Fig. III the waves of the superposed curves grow rapidly flatter.

It follows from this that in such cases as those represented in Figures I, II, and
IV the direction of the approximate curve at a point having a given abscissa does
not in general approach the direction of the series curve at the corresponding
point, or indeed, approach any limiting value, as the approximation is made
closer and closer; and that the length of any portion of the approximate curve
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will not in general approach the length of the corresponding portion of the series
curve.

Analytically this amounts to saying that the derivative of a function of x
cannot in general be obtained by differentiating term by term the Fourier’s
Series which represents the function.

(d) The area bounded by a given ordinate, the approximate curve, the axis
of X, and any second ordinate will approach as its limit the corresponding area
of the series curve if the series curve is continuous between the ordinates in
question; and will approach the area bounded by the given ordinate, the series
curve, the axis of X, any second ordinate, and a line perpendicular to the axis
of X, and joining the separate portions of the series curve if the latter has a
discontinuity between the ordinates in question.

Analytically this amounts to saying that the Fourier’s Series corresponding
to any given function can be integrated term by term and the resulting series will
represent the integral of the function even when the function is discontinuous
(v. Int. Cal. Art. 83).

We may note in passing that if the function curve is continuous a curve
representing the integral of the function will be continuous and will not change
its direction abruptly at any point; while if the function curve is discontinuous
the curve representing the integral will still be continuous but will change its
direction abruptly at points corresponding to the discontinuities of the given
function.

40.  The facts that the derivative of a Fourier’s Series cannot in general
be obtained by differentiating the series term by term and that its integral can
be obtained by integrating the series term by term are so important that it is
worth while to look at the matter a little more closely. Let us consider the
differentiation of the series represented in Art. 39 Figure I.

Let

1 1
Sn:sinx+§sin3z+gsin5x+~~+ sin(2n + 1)x.

2n+1

dsS,
Then g = 08T + cos 3z + cos bz + - - - + cos(2n + 1)z.
x

™
Ifx=—
T2 ds,
=" _9
dx
and the curve is parallel to the axis of X for x = g no matter what the value
of n.
Ifz=0o0rz=m

s,
di:l+1+1+1+-~+1:n+1
X
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and the curve y = S,, becomes more nearly perpendicular to the axis of X at
the origin and for z = 7 as we increase n.

T
If:c:§
R T
That is %: % if n=0 or n=3k
:7% ““n=1 “ n=3k+1
= 0 “ n=2 “ n=3k+2

T d
Consequently when 2 = — —— does not approach any limiting value as n is
x
indefinitely increased. Indeed, in the successive approximations the point whose
™
abscissa is — is successively on the rear, on the front, and on the crest or in the

trough of a wave, and although the waves are getting smaller they do not lose
their sharpness of pitch.

dS, . .
If  has any other value between 0 and 7 i will change abruptly as n is

changed and will not approach any limiting value as n is increased.

41. In general if we differentiate a Fourier’s Series

1
S = §bO+b1 cosx + by cos 2z + by cos3x + - - -

+ a1 sinx + as sin2x + azsindx + - - -
we get

—bysinxz — 2bysin2x — 3bzsin3x — ---

+ a1 cosx + 2as cos 2x + 3azcos3x + - - - .
Differentiate again and we get

— by cosx — 22by cos 2z — 3%b3 cos 3z — - - -

—aysine — 2%2a5sin 22 — 3%bgsin 3z — -+ - .

We see that each time we differentiate we multiply the coefficient of sin kx
and of cos kx by k while the term still involves cos kx or sin kx.
Since the series

cosx + cos2x + cos3x + - - -
+sinx +sin2x +sin3x + - - -

is not convergent, and a Fourier’s Series converges only because its coefficients
decrease as we advance in the series, the differentiation of a Fourier’s Series must
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make its convergence less rapid if it does not actually destroy it, and repetitions
of the process will usually eventually make the derived series diverge.

It is to be observed that the derived series are Fourier’s Series, but of some-
what special form, that is they lack the constant term. (v. Art. 30.)

If now we integrate a Fourier’s Series

1
§b0+b1 cosx + by cos 2x + b cos3x + - - -

+ aysinx + assin2x + azsin3x + - - -
1 . 1. . 1.
we get C+ EbofEerl sinx + §b2 sin 2z + gnglIl-?)l‘ 4
1 1
— a1 cosx — 5(12(?0821‘7 gagcos&rf S

a Trigonometric Series which converges more rapidly than the given series.

It is to be observed that the series obtained by integrating a Fourier’s Series
is not in general a Fourier’s Series owing to the presence of the term %bom. (v.
Art. 30.)

42.  We are now ready to consider the conditions under which a function
of x can be developed into a Fourier’s Series whose term by term derivative shall
be equal to the derivative of the function.

Let the function f(x) satisfy the conditions stated in Art. 37. Then there is
one Fourier’s Series and but one which is equal to it. Call this series S.

Let the derivative f’(x)! of the given function also satisfy the conditions
stated in Art. 37. Then f’(x) can be expressed as a Fourier’s Series. By Art. 39
(d) the integral of this latter series will be equal to the integral of f’(z), that is
to f(x) plus a constant, and one integral will be equal to f(x).

If this integral which is necessarily a Trigonometric Series is a Fourier’s Series
it must be identical with .S. It will be a Fourier’s Series only in case the Fourier’s
Series for f’(x) lacks the constant term 2bo.

But by = jf’(w)d:z: by (3) Art. 30.

Therefore by = ;[f(”) - f(=m);

and will be zero if f(7) = f(—m).

In order that f’(z) shall satisfy the conditions stated in Art. 37 f(z) while
satisfying the same conditions must in addition be finite and continuous between
x=—mand x = .

If, then, f(x) is single-valued, finite, and continuous, and has only a finite
number of mazima and minima, between x = —7 and x = 7, (the values z = —7
and z = 7 being included), and if f(7w) = f(—=n) f(z) can be developed into a

af(x)
dx

IWe shall regularly use the notation f’(z) for . v. Dif. Cal. Art. 124.
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Fourier’s Series whose term by term derivative will be equal to the derivative of
the function.

It will be observed that in this case the periodic curve y = S is continuous
throughout its whole extent.

43.  Since a Fourier’s Integral is a limiting case of a Fourier’s Series the
conclusions stated in this chapter hold, mutatis mutandis for a Fourier’s Integral.

For example if a function of x is finite and single-valued for all values of x
and has not an infinite number of discontinuities or of maxima and minima in
the neighborhood of any value of z it will be equal to the Fourier’s Integral

% :fdaz fA) cosa(A — x).dA

and to that Fourier’s Integral only, and the integral with respect to x of this
Fourier’s Integral will be equal to f f(x)dx.
If in addition f(x) is finite and continuous for all values of x the derivative

df (z)
de

of the Fourier’s Integral with respect to z will be equal to
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CHAPTER IV.

SOLUTION OF PROBLEMS IN PHYSICS BY THE AID OF FOURIER’S
INTEGRALS AND FOURIER’S SERIES.

44. In Art. 7 we have already considered at some length a problem in
Heat Conduction which required the use of a Fourier’s Series. We shall begin
the present chapter with a problem closely analogous in its treatment to that
of Art. 7, but calling for the use of a Fourier’s Integral.

Suppose that electricity is flowing in a thin plane sheet of infinite extent and
that the value of the potential function is given for every point in some straight
line in the sheet, required the value of the potential function at any point of the
sheet.

Let us take the line as the axis of X and consider at first only those points
for which y is positive:

We have, then, to satisfy the equation

2 21 _
DV + D,V =0 (1)
subject to the conditions
V=0 when y =0 (2)
V= f(x) “ y=0 (3)

where f(z) is a given function, and we are not concerned with negative values
of y.

As in Art. 7 we have e *Ysinax and e~ Y cos ax as particular values of V'
which satisfy (1) and (2). We must multiply them by constant coefficients and
so combine them as to satisfy condition (3).

By (3) Art. 32

f(z) = % jda f FO\) cos (X — z).dA. (4)
0 —00

We wish to build up a value of V' which will reduce to (4) when y = 0. This
requires a little care but not much ingenuity.

Take e~ Y cos ax and e~ Y sin ax and multiply the first by cosa, and the
second by sin a); they are still values of V' which satisfy (1). Add these and we
get

e~ cosa(A —x),

still a value of V' which satisfies (1), no matter what the values of o and A.
Multiply by f(A)dA and we have

e~ f(N) cosa(A — x).dA (5)
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as a value of V' which satisfies (1).

o

V= f e"Wf(A) cosa(A — x).dA (6)

is still a solution of (1) since it is the limit of the sum of terms covered by the
form (5); and finally

oo o0

71T fda j e~V f(\) cos (A — x).dX (7)
0

1
is a solution of (1) as it is — multiplied by the limit of the sum of terms formed
T

by multiplying the second member of (6) by da and giving different values to
a.

But (7) must be our required solution since while it satisfies (1) and (2), it
reduces to (4) when y = 0 and therefore satisfies condition (3).

If f(x) is an even function we can reduce (7) to the form

2 o0 o0
V=- jdozfe_ayf(/\) €Os Q. cos aAA.dA (8)
0o 0

and if f(x) is an odd function to the form

o0

2
_ 2 —ay . .
== ! do f F(A\) sinaz sin aX.dA. 9)

(7), (8), and (9) are valid only for positive values of y, but as the problem
is obviously symmetrical with respect to the axis of X, (7), (8), and (9) enable
us to get the value of the potential function at any point of the plane.

EXAMPLES.

1. Obtain forms (8) and (9) directly by the aid of (5) and (4) Art. 32.

2. State a problem in statical electricity of which the solution given in
Art. 44 is the solution.

45.  As a special case under Art. 44 let us consider the problem:—To find
the value of the potential function at any point of a thin plane sheet of infinite
extent where all points of a given line which lie to the left of the origin are kept
at potential zero, and all points which lie to the right of the origin are kept at
potential unity.

Here f(z) =0ifx <0 and f(z) =1if x > 0.
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(7) Art. 44 gives us the required solution. It is

1 o0 oo
V== fdaje_”‘y cos (A — x).dX; (1)
71'
0 0

but this can be much simplified.

‘We have
1 o0 o0
V= fd)\ f e” ¥ cosa(A— x).da.
o 0
Now Of e~ * cosmzx.dr = m

if a > 0. (Int. Cal. Art. 82, Ex. 8.)

(.- y
H ay A—x)doy= ——
ence Oje cosa(A — z).da =)
17 ydA 1 ([ L
a ny2+(>\fx)2 7r(2+an Y

0
™ 1 1T

tan( — —tan” " — | =ctn | tan” " — | = =
2 Y Y T

and consequently
1 1
V=- (F‘Ftan_l 95) =1- ~tan—' 2. (2)

)

SHES

1
Since log z = log(z + yi) = 3 log(2? + y?) + itan™!

[Int. Cal. Art. 33 (2)],
1 g

1 1 1 1
i——logz=1i— —log(x+yi) = —=— log(z* + y*) +i (1— — tan )
m m 2m s T

1
and 1 — = tan~ 2 and 5 log(x? + y?) are conjugate functions. (v. Int. Cal.
T

a x
Arts. 209 and 210.) Hence
1
Vi = “om log(z” + ) (3)
T

is a solution of the equation
D2Vi + DyVi = 0; (4)
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and the curves

1 (= 1z
Bl Y Z) = )
7T<2+an y) ¢ )
1
and —glog(mQ—i—yQ):b (6)

cut each other at right angles.

If we construct the curves obtained by giving different values to a in (5)
we get a set of equipotential lines for the conducting sheet described at the
beginning of this article, and the curves obtained by giving different values to
(b) in (6) will be the lines of flow.

Moreover since 1
Vi= 5 log(s? +47) 3)

is a solution of Laplace’s Equation (4), the lines of flow just mentioned will be
equipotential lines for a certain distribution of potential, for which the equipo-
tential lines above mentioned will be lines of flow.

V = a, that is
1
p (;T + tan™* 5) =aq, (5)
reduces to y = —x tanarm. (7)

If now we give to a values differing by a constant amount we get a set of
straight lines radiating from the origin and at equal angular intervals.
Vi = b, that is

1
Tor 1Og($2 + y2) =b, (6)

reduces to
$2 + y2 _ 6727rb' (8)

If we give to b a set of values differing
by a constant amount we get a set of circles
whose centres are at the origin and whose
radii form a geometrical progression. They
are the equipotential lines for a thin plane
sheet of infinite extent where the potential
function is kept equal to given different con-
stant values on the circumferences of two given concentric circles or where we
have a source at the origin; and for this system the lines (7) are lines of flow,
and (3) is the complete solution.

The figure gives the equipotential lines and lines of flow for either system,
but only for positive values of y. The complete figure has the axis of X as an
axis of symmetry.
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EXAMPLES.
1. Solve the problem of Art. 44 for the case where

fle)=—-1 if <0 and f(z)=1 if z>0.

2. Solve the problem of Art. 44 for the case where

fx)=a if <0 and f(x)=0b if x>0.

1 1
Ans., V= i(a +b)+ —(b—a)tan~!

s

3. Reduce (7), (8), and (9) Art. 44 to the forms

LT yf(N)dA
V—;_OO 2+ A—x)?
1 1 !
Vi=— Jyf(N)dA {y2+(,\$)2 y2+()\+x)2}’

respectively.

46. An especially interesting case of Art. 44 is the following where

74

< |8

flry=01if z< -1, flx)=11i# —1<z<l, and f(z)=0if z>1.

1 1 1-—
Here V== |tan"? it +tan~t —=
™ Y

1 1 1
N — 1 1—2)3]=-1 1—2z—9yi)i] = —1 1—2x)
ow - og[(1 — 2)i - og[(1 — z — yi)i] - ogly + (1 — x)i
1 7 1—=z
= 2 loel(l— ) 402+ Ltan—! =%
5 ogl(1—z)*+y ]+7rtan _—

and

~~ Togl(~1 — 2)i =~ logl(~1 — & ~ yi)i] =~ logly — (1 + 2)i]

1 ; 1
= ——log[(1 +2)* +¢* + L tan~! Ry
2 m

(1)
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] 1 1—
+ L {tanl ﬂ + tan~! -7
T Yy Yy

1 1—2 1 (1—2)2 492
2 log =~ log W TY
T ~—1l—z 27 T (1+z)?2+y?

Hence

1 1 1-— 1 1— )2
D tan 1 2% ftan 1277} and Liog U= Y
T Yy Yy 27 (I+2)2+9y2

1

are conjugate functions:* and

1 1 1-
— <tan1 1t +tan~! ac): a (2)
Y Y

is any equipotential line, and

3

1 (1 —z)% + 92
2 Og(1+z)2+y2 3)

any line of flow for the system described at the beginning of this article; and

1 (1—2)2 4 y?
Vi= —log o2 1Y 4
1 271' Og(1+x)2+y2 ()

is the solution of a new problem for which (3) represents any equipotential line
and (2) any line of flow.

IThe function conjugate to

1 1 1—
= [tan‘l R +tan™?! w]
G Yy ]

might have been found as follows. If ¢ is the required function and 1) the given function we
have by Int. Cal. Arts. 211, 212, and 213 the relations

Dy¢=Dyip and Dyp = —Dyp.

1 1+x 1—=x
H D = ——
e i w{(1+x)2+y2+(1—w)2+y2]
1 Y Y
d “Detp = —= - .
o - {(1+x)2+y2 (1—z)2+y2]

If now we integrate Dy with respect to x treating y as a constant and add an arbitrary
function of y we shall have ¢. So that

6= = 5o {1oBl(1 4 0+ 471~ logl(1 ~ 27 + 4] | + 1),
-1 Y _ Y df (y)
Pue= w{(1+m)2+y2 (1—w>2+y2] dy
df (y)

Comparing this with its equal —Dy1) above we find 5 0 and f(y) = C a constant
Y

1 1— 2 2
therefore — log w + C,
27 (1+ )2 +y2

where C' may be taken at pleasure, is our required conjugate function.
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(2) reduces to
2y

m = tanam
or 2 + (y — ctnam)? = csc? ar; (5)
2b7
2, 2, o6 T1 _
and (3) to 7 +y +2mx+1—0
b —br\ 2 b —br\ 2

e’ +e 9 e’ +e
or (x+ebwebw> +y :(ebﬂ'ebﬂ') -1
or (z + ctnh br)? + 32 = csch? b (6)

(5) and (6) are circles. The circles (5) have their centres in the axis of Y, and
pass through the points (—1,0) and (1,0); and the circles (6) have their centres
in the axis of X.

(4) is the complete solution, (6) is any equipotential line and (5) any line
of flow for a plane sheet in which the points in the circumferences of two given
circles whose centres are further apart than the sum of their radii are kept at
different constant potentials, or where a source and a sink of equal intensity are
placed at the points (—1,0) and (1,0). An important practical example is where
two wires connected with the poles of a battery are placed with their free ends
in contact with a thin plane sheet of conducting material. The figure shows the
equipotential lines and lines of flow of either system.

The complete figure would have the axis of X for an axis of symmetry.

EXAMPLES.

1. Show that if f(z) = a3 when & < —b, f(x) = az when —b < x < b,
f(x) = az when x > b,

1 b
V= m+— (ag —a;)tan™* ﬂ—f—(cu — ag) tan”
2 s Y Y

1 b—=x
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2. Show that if f(z) =0ifz <0, f(z) = a1 if 0 <z < by, f(z) = az if
by <z < by, f(.%‘) =a3zif by << b3, &C.,

1b1—1‘ 1b2—1‘

1
V== {al tan~! z + (a1 — ag) tan™ + (ag — ag) tan~
Yy

™

ba —
+(a3—a4)tan_13yx+...]

3. Show that if f(z) =-1ifz < -1, f(x) =z if -1 <z <1, f(x)=1if
z>1,
v, A-2)?+y?

1—
—(1—x)tan1x+log}
y 2 T (14x)2+y2

1 1
V=_|1+a)tan
™

4. Show that if f(z) = -1ifx < -1, f(z) =0if -1 <z <1, f(z) =1if
x>1,

1 1
V=2 |tan"* ﬂ — tan

7" Y Y

Show that the equipotential lines are equilateral hyperbolas passing through
the points (—1,0) and (1,0), and that the lines of flow are Cassinian ovals hav-
ing (—1,0) and (1,0) as foci. The lines of flow are equipotential lines and the
equipotential lines are lines of flow for the case where the points (—1,0) and
(1,0) are kept at the same infinite potential, or where very small ovals surround-
ing these points are kept at the same finite potential. The case is approximately
that of a pair of wires connected with the same pole of a battery whose other
pole is grounded, and then placed with their ends in contact with a thin plane
conducting sheet.

1 1—-x

5. Show that if f(z) =0ifz <0, f(x) = -1if 0 <z < a, f(z) =0if
a<z<b and f(x)=1if x > b,

1 |m a—x b—=x T
V=-— — —tan ' —~ —tan ' —~ —tan"' =
T2 Y Y

The conjugate function

1 .'1/'2 +y2
V=—Ilog
2r 7 [(a —2)* + ¢?][(b — 2)? + 7]

is the solution for the case where a sink and two sources of equal intensity lie
on the axis of X, the sink at the origin and the sources at the distances a and b
to the right of the origin. One of the lines of flow is easily seen to be the circle
2 4+ y? = ab.
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47.  If the plane conducting sheet has two straight edges at right angles
with each other and one is kept at potential zero while the value of the potential
function is given at each point of the second, that is if V' =0 when z = 0 and
V = f(z) when y = 0, the solution is readily obtained. It is

oo

2

- Ojdaj T F(N) sin ax sin a.dA. (1)
v. (9) Art. 44.
This reduces to

1%
U RO {yQ—l-(i—x)Q R @)
v. Ex. 3 Art. 45.
EXAMPLES.

1. IfV =0 wheny=0and V = F(y) when 2 = 0 show that

oo oo

2 —aw . .
- j da j F(X\) sin ay sin aA.dA

(=)

17 T T
=— | F — .
”of (AWL?HAW x“(ﬂy)?}
2. IfV = f(z) when y =0 and V = F(y) when x = 0 show that
V=110 (o )
™ P+ A—2)? y?+(A+2)?
x x
+ (X — dX.
( )(x2+(A—y)2 $2+(A+y)2)]
3. If F(y) = b the result of Ex. 2 reduces to
i y y
A)dA — .
J Frem EreTe)

4. If Fly)=1for0 <y < 1and F(y) =0 for y > 1 while f(z) =1 for
0<z<1land f(z)=0forx >1

V = —tan
T

2b 71g+
x

2=

1 1-— 1
V=-— [tan_l r_ tan~! 1t +2tan! ¥
™ Y Y T
1=y 14y 1%
+tan T — —tan” T —= 4+ 2tan” = —
T Y
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5. If one edge of the conducting sheet treated in Art. 47 is insulated, so
that D,V =0ifz=0and V = f(z) when y =0

oo

do j e~ f(A) cos ax cos aX.dA
0

2
v==
™

Y Y
Frdx Lﬂ + (A + )2 * y?+ (A —x)?

o%g OHS

3=

48.  If the conducting sheet is a long strip with parallel edges one of which
is at potential zero while the value of the potential function is given at all points
of the other, that is if V' = 0 when y = 0 and V = F(z) when y = b the problem
is not a very difficult one.

Since we are no longer concerned with the value of V- when y = c0 V =
e sinar and V = e*Y cos ax are available as particular solutions of the equation

D2V + D2V =0 (1)

aswellas V =e " ®sinax and V = e~ Y cos ax.

eV e W | .
Consequently — —sinaz = coshaysinax [Int. Cal. Art. 43 (2)]
e —e™ Y
and — sinaz = sinhaysinaz  [Int. Cal. Art. 43 (1)]
and coshaycosaxr and sinh aycosax

are now available values of V' and can be used precisely as e~ Y cosax and
e~ “sin ax are used in Art. 44.
Following the same course as in Art. 44 we get

17 T sinh ay
= — ——F —x). 2
v Wojda_L L F(N) cosa(A — x).dA (2)

as a solution of (1) which will reduce to V = F'(z) when y = b

1-1
and to V=0 when y =0, since sinh0 = —5 = 0,
and (2) is therefore our required solution.
If V is to be equal to zero when y = b and to f(x) when y = 0 we have only
to replace y by b — y and F(z) by f(x) in (2). We get

71r Jda f sinh a(b — y)f()\) cos a(A — x).dA. (3)
0

sinh ab
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If V= f(x) when y =0 and V = F(z) when y = b then

fd Tsmho‘(b* Y) (0 cos a (A — 2).dA

sinh ab

1 sinh ay
— F —x).dA.
+ - jda j ol ob (A) cosa(A — x).dX
This can be considerably simplified by the aid of the formula

. pm
s —

o .
f sinh pz o
: cosrx.dr = —
0 sinh qz 2¢ cos 2T + cosh rm
q q

if p? < ¢®. [Bierens de Haan, Tables of Def. Int. (7) 265] and becomes

1 T dA
V= % sm f F(A (b—y) =
——= 4 cosh - (A —x)
b b
1 . wy ¢ dX
+ —sin—= [ F(\) or
2b b _L cos %y + cosh %()\ —x)
iR F
Ve Lten™ [ ___J 7+ ——x A ﬂ.y}d)\. (5)
2b b Llecosh—(A—a) —cos—=  cosh—(\ — ) + cos —
b b b b
EXAMPLES.

1. Given the formula

dx 2 1 [b—a .
= t tanh — fb
fa—l—bcoshm b2 — a? an ( b+a o > Ho=a

1
show that if V =1 when y =0 and V =0 when y = b sz(b—y).

2. Show that if V =0 when y = b, V = —1 when y = 0 and = < 0, and
V=1wheny=0and z >0

9 tanh72

sztan_l 7ﬂ-yb

m t
an o

The solution for the conjugate system, that is, for a strip having a source at
(0,0) and an infinitely distant sink is

_ 1 2 TX 2 TY
V= log{cosh % cos 2b]’
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3. Show that if V = —1 when y = 0 and z < 0, V =1 when y = 0 and
x>0,V=—-1wheny=band z <0, and V =1 when y = b and x« > 0,

2 2
V = —tan™ (tan(b )tanh > + ftan (tan —ytanh )
T

2b 2b 2b 2b
2 sinh i
= Ztan~! 772 .
T .
Sin ?

The solution for the conjugate system, that is, for a strip having a source and
a sink at the points (0,0) and (0,b) is

1 cosh — —|— co 7ry

V = —log 7Tb$ ﬂ.b .
™ cosh — — ¢ Y
b b

4. IfV=0whenz =0,V = f(z) when y = 0 and x > 0, and V = 0 when
y=band z > 0.

1 T {sinha(b—y) ]
V= - Ofdon hab [cosa(A — x) — cosa(N + )] f(N)dA
1 . 7y { 1 1
= —sin — - FN)dA
2b b ¢ cosh%()\f:c) fcos%y cosh%()\Jr:r) - cos%

for positive values of x and for values of y between 0 and b.

5. f Vi =0whenz=0,V; = F(z) wheny =band x > 0, and V; =0
when y =0 and > 0

1 1
=7 [ F(VdA

2b b ¢ L:osh %()\ — x) 4 cos Lby cosh %()\ + ) — cos 5

for positive values of x and values of y between 0 and b.

6. If Vo =0 whenz =0, Vo = f(x) when y =0 and > 0, and V2 = F(x)
when y = b and > 0

Vo=V+V, for >0 and 0<y<b. (v.Exs. 4and5)

7. If one edge of the strip described in Art. 48 is insulated so that we have
V = f(z) when y = 0 and D,V = 0 when y = b show that

oo

_ 1 T cosha(b —y)
- Ojda f wosh b ————f(N) cosa(A — x).dA.
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By the aid of the formula

T p
00 cosh pz . cosh 50 cos 5
f cosrx.dr = — Vi g gﬂ if p<gq,
0 cosh gz 4 cos — 4 cosh —
q q

[Bierens de Haan, Def. Int. Tables (6) 265],
reduce this to

7r
V—lsin@ 00 f()\)coshz—b()\—x) o
= i 7y N
b 2b 7 cosh E()\ —x)— cos ==

8. IfV=0wheny =0 or band z < —a, V =1 when y =0 or b and
—a<z<a,and V=0wheny=0 or band z > a

9. f V=0wheny =0 or b and < —a, V = 1 when y = 0 and
—a<z<a,V=0wheny=0 or band x > a, and V = —1 when y = b and
—a<zr<a

X tanh 72— 7) tanh @+ 2)
V = — tan71 tiﬂ-g +tan71 tiﬂ-g
an —— an ——
b b
10. A system conjugate to that of Ex. 9is V = +00 when y =0 or b and
x=—a,V =—00 when y =0 or band z = a. In this case
1 sin? Ty + sinh? M
V:2—10g T W(az—x)'
T sin? Y + sinh? ——~
b b
49. Let us take now a problem in the flow of heat. Suppose we have an

infinite solid in which heat flows only in one direction, and that at the start the
temperature of each point of the solid is given. Let it be required to find the
temperature of any point of the solid at the end of the time t.

Here we have to solve the equation

Dyu = a2Diu (1)
[v. Art. 1 (11)] subject to the condition

u= f(z) when ¢t=0. (2)
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As the equation (1) is linear with constant coefficients we can get a particular
solution by the device used in Arts. 7 and 8.
Let u = e#*+2% and substitute in (1). We get

ﬂ — CL2042
as the only relation which need hold between 3 and «.
Hence u = errtato’t — gatatigax (3)

is a solution of (1) no matter what value is given to a.
To get a trigonometric form replace o by asa.

Then u=e P teaTi
If in (3) we replace o by —ai we get
u=e @ @ tgmami,
As in Arts. 7 and 8 we get from these values
—a2a2t —a%a’t

u==e sinar and u=e Ccos ax

as particular solutions of (1), @ being wholly unrestricted.
From these values we wish to build up a value of u which shall reduce to
f(z) when ¢t = 0 and shall still be a solution of (1).

1 o0 o0
We have flz)=— Jdoz f F(A) cosa(A — x).dA (4)
T 0 —o0
v. Art. 32 (3), and by proceeding as in Art. 44 we get
1 oo
-~ (d
u= Of a

as our required value of w.
This can be considerably simplified.
Changing the order of integration

j —a%’t £()\) cos a(\ — z).d\ (5)

e
—o00

u= % j FN)dA j e~ ¢og a(\ — x).da. (6)
—oo 0

oo

1/ o2
je‘“ga% cosa(A —x).da = % %67% (7)

0

by the formula

o 2
167“2:’?2 cosbz.dx = ge_# [Int. Cal. Art. 94 (2)]
a
0
1 ® (A—x)2
H = — Ae ™ ozt dM. 8
ence u 2a\/7§7J f(N)e 4 (8)
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A—x
Let -2
et now I6] i
then A=z +2aVt.3
and u= \% 7{(} flz+ 2aﬁ.ﬂ)e‘ﬂ2dﬁ. 9)
EXAMPLES.

1. Let the solid be of infinite extent and let the temperature be equal to a
constant ¢ at the time ¢ = 0.

C 2 2c 2
I'h — =843 - - .
en u je ﬂ—fg‘e dﬁ—c

v. Int. Cal. Art. 92 (2).

2. Let u =z when t = 0.

Then u= (x + Qaﬁ.ﬂ)e%ﬂdﬁ =z.

1 oo
L
3. Let u =22 when t = 0.
Then u = x>+ 2d°t.

4. Letu=0ifz < —-bu=1lif-b<x<b andu=0ifx > b, whent = 0.

Then
b—x
1 ff 4 — [ b b3 + 3bx2 . b5 + 106322 + 5bat ]
w— _ 2 .
VTP VT [2av  3(2av7)? 5.2!(2av/t)"
72a\ﬁ
5 Letu=0ifz<0andu=1if z >0 when ¢t =0.
Then
2y 2 s 2 1 2y 2 1
— ag = — [ e P dg+ e " dﬁ}: e P dB+ =
| [erass Jora] < 3 T
1 L1 1 { x3 N 25 B x’ n }
2 T 20V 3.(2aVE)3  5.2!(2aV1)5 T7.3!(2aV/1)7 '

6. An iron slab 10 c.m. thick is placed between and in contact with two
very thick iron slabs. The initial temperature of the middle slab is 100°, and of
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each of the outer slabs 0°. Required the temperature of a point in the middle
of the inner slab fifteen minutes after the slabs have been put together. Given
a? = 0.185 in C.G.S. units. Ans., 21°.6.

7. Two very thick iron slabs one of which is at the temperature 0° and the
other at the temperature 100° throughout are placed together face to face. Find
the temperature of each slab 10 c¢.m. from their common face fifteen minutes
after they have been placed together. Ans., 70°.8, 29°.2.

8. Find a particular solution of Dyu = a?D2?u on the assumption that it is
of the form u = T.X where T is a function of ¢ alone and X is a function of z
alone.

50. If our solid has one plane face which is kept at the constant tem-
perature zero, and we start with any given distribution of heat, the problem is
somewhat modified.

Take the origin of coordinates in the plane face. Then we have as before the
equation

Dyu = a*D2u, (1)

but our conditions are
u=0 when z=0 (2)
u=f(z) “ t=0 (3)

and we are concerned only with positive values of x.
We may then use the form (4) Art. 32

2 (oo} o0 ) .
flx)= - Ojdaoff()\) sin ax sin aA.dA, (4)
and proceeding as in the last section we get
2 o0 oo
u=— fdaje*“%‘%f()\) sin ax sin aA.dA (5)
™
0 0

as our required solution. This may be reduced considerably.

w=1 [ FOax [ e eosa(A ~ x) — cosa(r +o)lda,
0 0

1
2a\/ﬁ

by (7) Art. 49, and this may be reduced to the form

_ Q-2 _Otn)?

[ FO) e T — e T )dA (6)
0

or u=

-1
VT

u

[ T e 7 f(x + 2aVE.B)dB — Te—62 fl=z +2aVE.8)dB|. (7)

2aVt 2av't
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EXAMPLES.

1. Let the initial temperature be constant and equal to c.
Then

u= \;E[ T e B dB — joe‘52dﬁ]
VT

x

2av/t 2a/t
2c 2fﬁ _Bzdﬁ
= — e
VT
_ 2 { x 3 N x x’ N
VT 20V 3.2aVE)3 T 5.21(20v1)5  7.31.(2a0/1)7

2. Assuming that the earth was originally at the temperature 7000° Fahren-
heit throughout, and that the surface was kept at the constant temperature 0°,
find (1) the temperature 10 miles below the surface 10,000,000 years after the
cooling began; (2) the temperature 1 mile below the surface at the same epoch;
(3) the temperature 10 miles below the surface 100,000,000 years after the cool-
ing began; (4) the temperature 1 mile below the surface at the same epoch; (5)
the rate at which the temperature was increasing with the distance from the
surface at each point at each epoch.

Neglect the convexity of the earth’s surface and take Sir Wm. Thomson’s
value of a?(400) the foot, the Fahrenheit degree, and the year being taken as
units. (Thomson and Tait’s Nat. Phil. Vol. II. Appendix.)

Ans., (1) 3114°; (2) 329°.5; (3) 1036°; (4) 103°; (5) 1° for every 20 feet, 3°
for every 50 feet, 1° for every 50 feet, 1° for every 50 feet.

3. Let the initial temperature be constant and equal to —b, then by Ex. 1

x

20 ff g
U=—— e .
VT oy

4. Let the temperature of the plane face be b instead of zero, and let the
initial temperature be zero.

Then we have only to add b to the second member of the solution in Ex. 3,
as we may since u = b is a solution of (1) Art. 49, and we get

2

2 "
u:b<1—ﬁ f e dﬁ).

0

5. Let u =0 when x =0 and u = f(z) when t = 0.
Then

2ot 1 7 —a)? Ota)?
)+ ff(A)[e_ Wi — e i |dA
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by (6) Art. 50.

6. Let u=0bwhen z=0and u=cwhent=0.

x

e

2 2a/t N
Then u=b+(c—b)— j e P dp.
VT oy

7. If the earth has been cooling for 200,000,000 years from a uniform tem-
perature, prove that the rate of cooling is greatest at a depth of about 76 miles,
and that at a depth of about 130 miles the rate of cooling has reached its max-
imum value for all time. Let a? = 400.

8. Show that if the plane face of the solid considered in Art. 50 instead of
being kept at temperature zero is impervious to heat

_ =2 _ Ota)?

1 o0
= A 1a%t 4 2aZt )d\. . (6) Art. 50.
u 2amoff”(e e ) v. (6) Ar

51. If the temperature of the plane face of the solid described in Art. 50
is a given function of the time and the initial temperature is zero, the solution
of the problem can be obtained by a very ingenious method due to Riemann.

Here we have to solve the equation

Dyu = a*D2u (1)
subject to the conditions

u=F(t) when z=0
u=0 “ t=0.

We know that

x

2 2}” 2
_ -8B
U=— e P dp
VA

is a solution of (1), v. Ex. 1 Art. 50. It is easily shown that

—Z
2a/t—c
2

u= [ eap, (3)
0

where ¢ is any constant, is a solution of (1).

For
2 €T 1 ,L €T 3 ,L

Diuy= ———— ¢ 4d%(t—c) = — t—c) 2e 4a2(t—o)

' VT 2a2(t — c)} N
D 2 L =

U= ——=—F7———¢ (¢

x VT 200/t — ¢
pry— 2 1 20 g — - (p— ) e wme

/7T 2aT — c4a2(t — c) 2a3\/7
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and Dyu = a®’D?u.

Let ¢(x,t) be a function of z and ¢ which shall be equal to zero if ¢ is negative
and shall be equal to

2 2am\ﬁ 5
1—— A4
N
if ¢ is equal to or greater than zero; so that if x = 0 ¢(x,t) = 1 and if ¢ =
0 ¢(x,t) =0.

We shall now attack the following problem, to solve equation (1) subject to
the conditions

u=0 if t=0
u=F@0) “ z=0 and 0<t<T
u=Fkr)“ =0 ¢ kr<t<(k+1)T,

where k is any whole number and 7 is any arbitrarily chosen interval of time.
If we form the value

u=F(kr)[¢(z,t — k1) — ¢(z,t — (k+1)7)] (4)
u will satisfy equation (1) since zero, unity and

5 ik
-8B
— e 7 dg
2
are values of u which satisfy (1). u will be zero if ¢ < kr by the definition of the
function ¢(z,t);ifx =0u=0ift > (k+1)7 and u = F(k7) if k7 <t < (k+1)7.
Therefore
k=00
u= ) Fkr)d(x,t —kt) = d(x,t = (k+1)7)] ()
k=0

is the solution of the problem stated above.

(5) can be simplified somewhat from the consideration that for a given value
of t ¢(x,t —k7) =0 if kr > t. If, then, n7 is the greatest whole multiple of T
not exceeding t,

k=n
u= Z Fkr)[p(x,t — k1) — ¢p(z,t — (K + 1)71)]. (6)
k=0
If now we decrease 7 indefinitely the limiting form of (6) will be the solution

of the problem stated at the beginning of this article.
(6) may be written

T
T

w= ZF(]CT) |:¢(x7tk7_)¢(xvt(k+1)7_) (7)
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and if 7 is indefinitely decreased the limiting form of (7) is

u= —jF()\)D,\d)(:z:,t — \)dA.
0

Since t — A is positive between the limits of integration

bzt —A) =1— % -8%43,

22

e 4aZ(t—x) (t _ )\)*%

)

x
d D t—A)=—

an A¢(I7 ) 2aﬁ

and (8) may be written

t

T _ =2
= F(XNe 4a?t=%(t — X)"2dA\
u QWOJ (Me (t =N Hax,
or if we let Jé] :c
rif w =
2avt — A\
2 x2
— F(t—-——)dpg.
RV (1= 50 5
2a

EXAMPLES.

1. Ifu=nt whenxz=0and u=0whent=0

x

x? 22‘1\” nayt 22
“:”(”w)[l‘ﬁJ ) - e

89

(10)

2. A thick iron slab is at the temperature zero throughout, one of its plane
faces is then kept at the temperature 100° Centigrade for 5 minutes, then at the
temperature zero for the next 5 minutes, then at the temperature 100° for the
next 5 minutes, and then at the temperature zero. Required the temperature of
a point in the slab 5 c.m. from the face at the expiration of 18 minutes. Given;

a® = .185.

3. If u= F(t) when x =0 and v = f(z) when ¢t = 0, then

2 T 2 72 (-x)? (A fa)?
_ -B _ aZt T 4aZt
Rz f ’ F<t 4a252>‘w zaff e e wE)f

2aV't

v. (6) Art. 50.

Ans., 20°.1.

(\)d(N).
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4. Ifin Art. (51) F'(¢) is a periodic function of the time of period T' it can
be expressed by a Fourier’s series of the form

1 2
F(t)= §b0 + Z [am, sin mat + by, cosmat], where «= %,

m=1
m=o0

1
or F(t)= TN + mz; Pm sin(mat + A,
where Pm COS Ay = Gy, and  py, sin Ay, = by, v. Art. 31 Ex. 3.

Show that with this value of F(¢) (10) Art. 51. becomes

o0 m=o0

1 2 T 2
w= ﬁbo Tj e z_: {sm (mat 4+ ) J e cos %dﬁ
2av/t m=1 2av/T
o0 2
—cos(mat + A\p,) ‘! e sin Z(L;;;Qdﬂ}
2aVt

and that as t increases u approaches the value

1 =< _ =z [ma . T [mao
= ibo + mz::l pme V2 sin(mat — At Am).
Given that

x2

0;38

b n b
e~ sin —dz = ge’bﬁ sin bv/2; fe*f cos —zdx = ge’bﬁ cos bv/2.
T
0

v. Riemann, Lin. par. dif. gl. § 54.

5. If we are dealing with a bar of small cross-section where the heat not
only flows along the bar but at the same time escapes at the surface of the bar
into air at the temperature zero we have to solve the differential equation

Diu = a®>D%u — b*u. v. Fourier, Heat § 105.

Show that for this case

2, 2 2 . 12, 2.2
u=e O"Ha Dt ginag and u=e Tt os g

are particular solutions, and that if u = f(x) when t =0
—b*t X

vt R o Sk e a2
zaf j e f(A\)dA - fe 7 f(x + 2aV/t.8)d3

cf. (8) and (9) Art. 49.
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If u=0 when z =0 and u = f(z) when t =0

FL

cf. (7) Art. 50.
Ifu=—e"% whent=0and u=0 when z =0

u = 1[(3& j _(b‘[+ﬂ)2dﬁ —bz T —(bVt+) dﬁ]

N

[z 4+ 2aVt.3)dS — f —x + Qaﬂ.ﬂ)dﬂ} .

Za\f

x

2aVt 2af

and if u = 1 when £ = 0 and v = 0 when ¢ = 0 we have only to add e~ & to the
. . bx . .
second member of the last equation, since u = e~ « satisfies the equation

Dyu = a®>D?u — b*u.

If w = F(t) when = 0 and uw = 0 when ¢ = 0 we can employ the method of
Art. 51.

= 1 0 . %)
¢(£U,t — )\) = e_% + T |:6a f —(bVE=2+3)? df — e J‘ 6_(bm+3)2d5 7
7T P

Taviex *ﬁ
VD) bt R Y
—Drgp(z,t — N) = u@ G 1a2(t-x) ;

2a+/T

and u =

t
x —3 (=N s
t— 5 4a2(t—x) |7
TN Oj( N 2e (A)dA,

cf. (9) Art. 51,

or u =

2 _pgr_ b%? 2
N J e 4“25”“(’5 2ﬁ2>dﬁ,

cf. (10) Art. 51.
If F(t) is periodic and has the value taken in Ex. 4, show that the value
approached by u as t increases is

b — V2
7b @ § ~ 5y t— =g+ A
u = —bge~ Sa sm(ma % q+ )

where p= (0> + Vb* +m2a2)? and ¢ = (—=b* + /b* + m2a?)3.
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. T —xz—%é _ ﬁ —2a
Given fe dx 5 e
0

o0 az 2
Jeﬂ”%f sin —dr = ﬁe_zc sin 2d
0 x 2
oo .2 b2

and f e~ "5 cos —dr = ge_% cos 2d,
0

where

2 2
c:i(a2+ a*+bY)?  and dzi( a® +\/at +b4)3

Angstrom’s method of determining the conductivity of a metal is based
on the result just given (v. Phil. Mag. Feb. 1863), and is described by Sir
Wm. Thomson (Encyc. Brit. Article “Heat”) as by far the best that has yet
been devised.

52. If u is a periodic function of the time when x = 0 as in Art. 51 Ex. 4
and we are concerned with the limiting value approached by u as t increases
we can avoid evaluating a complicated definite integral if we take the following
course.

Since as we have seen in Art. 49 u = e7'+°% ig a solution of

Dyu = a*D?u (1)
provided only that 8 = a?a® we have
Bt+ 2B

u==ec

as a solution.
Replacing 3 by 454 this becomes

u = Bt EVBVE
or w = Bt/ Z (1)
1
since Vi= :t§\/§(1+i)

and @:i%\/i(l—i).

sin(ﬁt—zﬂ\/g), u:e_iﬁcos(ﬂt—z §>7 (2)

uezﬁsin(6t+2\/§), uei\/g608<ﬂt+z ﬂ), (3)

Hence

x

U==e

WG|
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are particular solutions of (1).
From these we get readily

u:pmeﬁ\/”;asin(mat—meQa—i—)\m) (4)
a

as a solution. (4) reduces to
u = ppy sin(mat + Ap,) when =0

and to U= pm67% Yasa Sin()\m _z rr;a) when t=0.
al

If we add a term which satisfies (1) and which is equal to zero when x = 0

and to —pe” sV "2 sin (/\m - g, / ’I’)’;Oé) when ¢t = 0 (v. Art. 50) we shall have

a solution of (1) which is zero when ¢ = 0 and which is

pm sin(mat + A\;,) when 2z =0.

The term in question approaches zero as ¢ increases [v. (7) Art. 50] and we have
at once the solution given in Art. 51 Ex. 4, as our required result.

EXAMPLE.

Show that u = e#+°% is a solution of Dyu = a2D?u — b%u if 3 = a?a? — b2,
and hence that

z 2 1+ L 2 ] tet+ —E— )
U = PtEZVD By = pELLIEE/b i gy = P ziaﬁ(piqz)’

u=etivs sin<ﬂt + qu)’ and u=etavz cos<ﬂt + qu),

a a

where
p=[VE+b +0%7 and q= [V + " — b7z,

are solutions. Hence

“sin(9r - )
u = € a sSin - =
p’m a\/i m

is a solution.

If B = ma this last result reduces to u = py, sin(mat + Ap,) when z = 0 and
by the reasoning of Art. 52 it must be the value u approaches as t increases if
we have the same conditions as in the last part of Art. 51 Ex. 5.



SOLUTION OF PROBLEMS IN PHYSICS. 94

53. The whole problem of the flow of heat is treated by Sir William
Thomson (v. Math. and Phys. Papers, Vol. II), and other recent writers from a
different and decidedly interesting point of view, which we shall briefly sketch
in connection with the problem of Linear Flow.

Suppose we are dealing with a bar having a small cross-section and an
adiathermanous surface, and take as our unit of heat the amount required to
raise by a unit the temperature of a unit of length of the bar. If at a point
of the bar a quantity @ of heat is suddenly generated the point is called an
instantaneous heat source of strength Q.

If the heat instead of being suddenly generated is generated gradually and
at a rate that would give Q) units of heat per unit of time the point is called a
permanent heat source of strength Q.

The temperature at any point of the bar at any time due to an instantaneous
source of strength @ at the point = A is easily found by the aid of formula (8)
Art. 49 as follows:—

If a quantity of heat () is suddenly generated along the portion of the bar
from x = A to x = A+ A\, where A\ is any arbitrary length, the temperature

of that portion will be suddenly raised to %, and we shall have by (8) Art. 49

A+AN )
(@Y

f e it d\ (1)

A

Q 1
2av/mt AN

as the temperature of any point of the bar at any time t thereafter.
If now we write u equal to the limiting value approached by the second
member of (1) as AX is made to approach zero we get

Q _0o-»?
e 4a2t 2
2av/ 7t @)

as the solution for the case where we have an instantaneous source at the point
=M Q
It is to be observed that in (2) v = 0 when ¢t = 0 and v =
2a+/7t

x=MXand t > 0.

If we have several sources we have only to add the temperatures due to the
separate sources.

Formula (8) Art. 49 may now be regarded as the solution for the case where
we start with an instantaneous heat source of strength f(\)d\ in every element
of length of the bar.

A source of strength — (@ is called a sink of strength @; and (6) Art. 50 may be
regarded as the solution for the case where we have at the start an instantaneous
source of strength f(A)d\ in every element of the bar whose distance to the right
of the origin is A, and an instantaneous sink of strength f(\)dA\ in every element
of the bar whose distance to the left of the origin is A.

If we have an instantaneous source at the origin (2) reduces to

Q 22
e 4a2t 3
2a+/7t 3)

when
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For a permanent source of constant strength @ at the origin (3) gives

Qa\fje 4a2(f D(t—71)" 3dr (4)

and for a permanent source of variable strength f(¢)

Zaffe 4a2<f D (t— 1) f(r)dr. (5)

In (4) and (5) u obviously reduces to zero when ¢t = 0 and = > 0, but its value
when z = 0 is not easily determined. We can avoid the difficulty by introducing
the conception of a doublet.

54. If a source and a sink of equal strength ) are made to approach each
other while @ multiplied by their distance apart is kept equal to a constant P
the limiting state of things is said to be due to a doublet of strength P whose
axis is tangent to the line of approach and points from sink to source. A doublet
of strength — P differs from a doublet of strength P only in that its axis has the
opposite direction.

Let us find the temperature due to an instantaneous doublet of strength P
placed at the origin. For a source of strength @ at x = n and an equal sink at
x = —n we have

Q _ (=) _ (n4a)?

% ﬂ-t(e 402t — g 4a2t)

u =

or if 2nQ = P,

P _LJ;JCQ)( g —_nz )
= — ¢ 4a2t €2a2t — € 2a2t
dany/t
P (n2+22) nx
= ————¢ 4t sinh ——
2an/mt 2a?

If n is made to approach zero

1
limit | — sinh —— A i,
n 2a2t 2at

t

P 2
and U= TR (1)

4a3/mt3
is the solution for the temperature at any time and place due to an instantaneous
doublet of strength P placed at the origin. For a doublet at any other point

r = X\ we have
Pz —X) _@=n?
= — ‘¢ 4a

= 2, 2
4ad3v/t3 @)
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For a permanent doublet of constant strength P placed at the origin we have

agfje W (¢ )b (3)

and for a permanent doublet of variable strength f(t)

u= T D (t—7)72 f(r)dr, (4)

4a3\fj

, 2
or u:m j e_ﬂf(t_zmxzﬂz>dﬁ (5)

2av/t

if x >0, and

1 e 2
uzazﬁ ! ‘ ﬁf(tﬁlazﬂz)dﬁ 8

2aVt

xT

2/t — T

if x <0, if we let 5=

t
From (5) and (6) we see readily that « = 0 when ¢ = 0 and that u = %
a
t
when z = 0 if we approach the origin from the right and that u = —% when
a

x = 0 if we approach the origin from the left.

If the point = 0 is kept at the constant temperature b and we are concerned
only with positive values of = we can get from (5) the solution given in Art. 50
Ex. 4 by supposing a permanent doublet of strength 2a?b placed at the origin.

To solve the problem treated in Art. 51 we have only to suppose a permanent
doublet of strength 2a?F(t) placed at z = 0 and from (5) we get at once (10)
Art. 51.

EXAMPLE.

Show that if Dyu = a?D2u — b*u and an instantaneous source of strength Q
is placed at x = A

1,2
= _Q el v. Art. 51, Ex. 5.
a\/ﬂ-

Show that if an instantaneous doublet of strength P is placed at the point
=0

Pz oVt 2?

= 4a2t ,
4a3 V3
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If a permanent doublet of strength f(¢) is placed at z = 0

t 22
T — jeiw(tﬂ-)im(t — )i f(r)dr
0

1 _p?_ 222 z?
= — 4232 t————=]d
v ] (1 g
2at
f@)
Whenceu:OWhent:Oandz>00rx<0andu::tﬁ when z = 0.

Hence if we place at © = 0 a permanent doublet of strength 2a?F(t) we get
the solution given in Art. 51 Ex. 5 for the case where v = F(t) when z = 0 and
u = 0 when ¢ = 0 provided we are concerned only with positive values of x.

If F(t) = ¢ this reduces to

oo
2c _g2_ b%z2
u= = j e P a3 4.
VT
2avt

55.  As another example of the use of Fourier’s Integral we shall consider
the transmission of a disturbance along a stretched elastic string.

Suppose we have a stretched elastic string so long that we need not consider
what happens at its ends, that is so long that we may treat its length as infinite.
Let the string be initially distorted into some given form and then released; to
investigate its subsequent motion.

Let us take the position of equilibrium of the string as the axis of X and
any given point as origin.

We have, then, to solve the differential equation

D}y =a*D}y (1)
[v. (vimr) Art. 1] subject to the conditions

y=f(r) when t=0 (2)
Dy =0 “«  t=0. (3)

As in Art. 8 we find
y=cosa(zxtat) and y=sina(zr =t at)

as particular solutions of (1).
From these we must build up a value that will reduce to

f(z) = %Ida j F(A) cosa(X — z).dX (4)
0 —0oo
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when ¢t = 0 and will at the same time satisfy (3).

y = cosaAcos oz + at) + sin aA sin a(x + at)

or y = cosa(\ —x — at)

is a solution of (1).
1 o0 oo
Hence y=_ OjdaL Ff(A) cosa(XA — x — at).dr (5)

is also a solution of (1).
(5) reduces to y = f(x) when t = 0 but it gives

a oo oo
Dyy=—| ad A)sina(X — z).dA
vy Wofa aiL f)sina(A —z)

when ¢t = 0 and consequently does not satisfy equation (3).
If in forming (5) we use cos a(x —at) and sin a(x —at) instead of cos a(x +at)
and sin a(z + at) we get

1 o0 o0
y=— b[daij F(A) cosa(A — z + at).dA (6)
which is a solution of (1), and reduces to y = f(z) when t = 0, but it gives
a T .
Dy = - Oj ada_j FA) sina(X — z).dx

when ¢ = 0 and does not satisfy (3).
If, however, we take one-half the sum of the values of y in (5) and (6) we get

1 1 o0 o0
v=5 Wofda_j f(A) cosa(A — x — at).dr

—|—% Tda Tf()\) cosa(\ —x + at).dX|, (7)
0 —00

a solution of (1) which satisfies both (2) and (3), and is, therefore, our required
solution.

This result can be very much simplified.

If we substitute z = = + at

% jda f FfA) cosa(\ — x — at).dA
0 —00

oo oo

:ljda j F(N) cosa(X = z).d\ = f(z) = f(x + at);

™
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and in like manner we can show that

%Tdoz T f(A) cosa(A —x + at).dX = f(z — at).
0

— 00

Hence our solution becomes
1
y=5lf(z+at) + f(z —at)]. (8)

This result is of great importance in the theory of elastic strings and it
shows that the initial disturbance splits into two equal waves which run along
the string, one to the right and the other to the left, with a uniform velocity a,
and that there is nothing like a periodic motion or vibration of any sort unless
the ends of the string produce some effect.

56.  If the string is not initially distorted but starts from its position of
equilibrium with a given initial velocity impressed upon each point we have to
solve the equation

D}y =a’D3y (1)
subject to the conditions
y=0 when t=0 (2)
Dy =F(x) “ t=0. (3)
We get by the process used in Art. 55
Y= ﬁla ;[Odaz FOV [sina(/\ ; x+at) sina() ; T — at)} D

1 ° Tlsina(A—z+at) sina(l—z— at) )
=5 _L F()\)d)\J { - da;

e e
but Tsina()\—x—i-at)da_Tsina(/\—x—at)da:ﬂ_
0 @ 0 @
if x —at < A < x+ at, and is equal to zero for all other values of \; since
[P g = 2 it m>0
T 2
0
- —g if m<0
= 0 if m=0
v. Int. Cal. Art. 92 (3).
1 x+at
H = — F(\)d\ 4
ence y 2[ ) (4)

is our required solution.
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EXAMPLES.

1. If the string is initially distorted and starts with initial velocity so that
y = f(x) and Dy = F(z) when t =0

x+at
y= 5[t + fe a4+ 5o [ FO)aA

r—at

2. If the initial disturbance is caused by a blow, as from the hammer in a
piano, which impresses upon all the points in a portion of the string of length ¢
an equal transverse velocity b show that the front of the wave which will be seen
to run to the left along the string will be a straight line having a slope equal to

b
% and a length equal to 2£\/ 4a? 4+ b2. Of course a wave having a front of the
a a

b
same length with a slope equal to —— will be seen to run to the right along

a
the string, and the effect of the two waves will be to lift the string bodily and

. be . .. ..
permanently to a distance % above its original position.
a

57.  We shall now take up a few examples of the use of Fourier’s Series.
In the problem of Art. 7 let the temperature of the base of the plate be a
given function of z, the other conditions remaining unchanged.

Since flz) = Z (am sinmz)
m=1
2 ¢ ,
where U =— j f(a) sinma.da
™
B 0
2 m=0o0 B ) T )
we have u=— e” ™ sinma j fla)sinma.da]. (1)
™
m=1 0

If the breadth of the plate is a instead of 7

2"~ [ _mmy ( A
u=- mZ:l [e_ a sin m;rx Off()\) sin m;Td)\} (2)

58. If the temperature of the base is unity and the breadth of the plate
is 7 the solution is, as we have seen in Art. 7,

4 1 1
U= [e‘y sinx + 56_33’ sin 3z + 36_59 sin5x+~-~]. (1)
T

This series can be summed without difficulty. We have the development
2 3 4

V4 z z z
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if the modulus of z is less than 1. Int. Cal. Art. 221 (4).
2 3 4
Hence log(lfz):f§7%7%7%7~u
if mod. z < 1.
and 1[lo (I1+2)—1o (1—2)]*E+£+Zj+ (2)
28 8 17375
if mod. z < 1.
But
log(1 + 2z) = log[1 + 7(cos ¢ + isin @)]
1 .
=3 log[(1 + 7 cos ¢)* + (rsin¢)?] +itan™! %
1 .
=5 log (1 +2rcos¢ 4 r?) 4+ itan™* %,
and
1 .
log(1—2) = 3 log(1 — 2rcos ¢ + r?) —itan™! %,
[Int. Cal. Art. 33 (2)],
and (2) becomes
1 110 14 2rcos¢ + r? L itan—! 27 sin ¢
212 g1—2rcos¢>+r2 1—1r2
r(cos¢ +ising)  r3(cos3p + isin3¢)
= + (3)
1 3
From (3) we get two equations
1 14+2rcos¢+12 rcos¢ r3cos3d 1°cosbo
1 = 4
4 %17 " 2rcos+ 12 T T Tt ()
1 _12rsing _ rsing r3sin3¢  rdsinbe
2T T 3 5 )
both valid for all values of ¢ provided r < 1.
e Y is less than 1 if y is positive.
Hence from (5)
e Ysina n e~ sin 3z n e~ sin b n 1 tan-1 2e Ysinw
ce= Zgan 1P
1 3 5 2" T e
1 2sinz 1 _, sinz

-l 2>
2 ey —e Y 2

sinhy’
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and (1) may be written

_, sinz

2
u = — tan .
T sinh y

If we replace r by e™¥ and ¢ by z in
log[1 + r( cos ¢ + isin ¢)]
it becomes log[1 + e™Y cosx + ie ¥ sin z
or log[1+4 cos z + i sin 2]

v. Int. Cal. Art. 35 (3) and (4)
a function of z as a whole; and

log[1 — r(cos ¢ + isin ¢)]

becomes log(1— cos z — isin z);
hence by Int. Cal. Arts. 212 and 213,
1. 142 Ycosx+e 2 1 _1 2e Vsinx
1°°%T _2e—vcosa + e and 2 tan 1—e2
or 1 log coshy + cosx and 1 tan—1 s.in:z:
4 coshy — cosx 2 sinh y

are conjugate functions, and

1 coshy + cosx
uy = — log ————
7r coshy — cosx

(7)

is the solution for the problem where the isothermal lines are the lines of flow of
the present problem and the lines of flow are the isothermal lines of the present
problem.
For our problem, then, the isothermal lines are given by the equation
2 _; sinzx

m sinhy

or

and the lines of flow by

1 coshy + cosx
log————— =

T & coshy — cosx

h
or coshy +cosz _ e™. 9)
coshy — cosz
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EXAMPLES.

1. If Diu+ D}u =0, and u = 1 when y = 0, and u = 0 when z = 0 and
when z = a,

4] xy . mx 1 _sxy . 3mx 1 _smy Srx
u=—|e asin— +—-€e @« sin— + —e @« sin—— +-
™ a 3 a 5 a

. T

sin —

= Ztan~! %
T : Y
sinh —

r=a
2 "=’ mrzx | m
u=— e~ "+ sin f(b sin dA
a
m=1 0
T 1 1
+ —sin — { — ] FA) dA
2a a Of coshz()\—y) —cos X cosh T ()\—l—y) —cosE
a a
1 1
+ — sin — { —F — m]F()\)d)\
2a @ o L cosh— ()\ y) +cos—  cosh— ()\ +y) + cos —
a a
v. Art. 48, Exs. 4, 5, and 6.
59.  If three sides of a plane rectangular sheet of conducting material be

kept at potential zero and the value of the potential function at every point of
the fourth side be given; to find the value of this potential function at any point
of the sheet.

To formulate:—

DV+ D2V = 0. (1)
V=0 when z=0. (2)
V=0 “ x=a. (3)
V=0 ¢ y=b (4)
V=j@) ¢ y=0. (5)

Working as in Art. 48 we get

. omm
sinh 7(1) ) e
sin

sinh ——
a
as a value of V' which satisfies equations (1), (2), (3), and (4) if m is an integer.

Therefore

= Sinh—mﬂ(b y)
2 "= o O7Y) o ¢ . MTA
52:: [ S Oj J() sin ==dA (6)

sinh

a
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is our required solution.
EXAMPLES.

1. If f(x) =1 Eq. (6) Art. 59 reduces to

b
o inh5i
a
2. IfV =0whenz =0,V =0 when z = a, V = 0 when y = 0, and
V = F(z) when y = b, then
=oo [sinh mry
2 "= m7r:c “
V=- Z [ m7rb " jF sm d)\].
m=1 Lsinh — 0
a
3. If F(x) =1 the answer of Ex. 2 reduces to
4 sinh —= Ty T 1 sinh Ly 3 1 sinh 57r7y 5
V=-— a 'n——l—fiasin——i—fiasin——i—---
T b 3 . 3mb a 5 . 5mb a
sinh — sinh — sinh —
a a a
4. IfV =0when x =0,V =0 when x = a, V = f(x) when y = 0, and

V = F(z) when y = b, then

9 M=%0 sinh 2% b y)
V=- lsin mr ( f fa sm
a

sinh m—ﬂb

smh
—l—ijF sin WAdA)].
mmbh a
sinh ——
a

mmb a

m=o0 ["cosh mr (b y) a
9 "= 5~ A
‘ [ a \2 sin - [ £(A) sin md)\] .
a 0 a



SOLUTION OF PROBLEMS IN PHYSICS. 105

6. If f(z) = F(x) =1 the answer of Ex. 5 reduces to

b b
s "OSha(i‘y>s m+1COSha(2‘y) 3nz
coshﬂ—b a 3 hglb a
2 2a

g Cosh5—b
2a
7. fV = f(x) wheny =0, V = F(z) when y = b, V = ¢(y) when = = 0,
and V = x(y) when x = a, then

m=00 sinh 7 b y)
V= 2 [sin mr ( ff sm
a

a mﬂ'b
sinh ——

sinh —= mry
mm\
+WIF sin dA)]

sinh ——
a

= sinh — 7T (a—z) 0
2"~ - >\
+3 l sin Y ( b | () sin T 2dx
0

m=1 b Slnh
sinh MmrL -, mi\
+ ———>— | x(A\)sin x| |.
sinh @ f b

b

8. If f(x) = ¢(y) = 0 and F(z) = x(y) = 1 the answer of Ex. 7 may be
reduced to

,h7r a h27r a
2[@ o 3(5_”6)8111@ 1608 7(5‘”5)81 2my

[~ E—— + n
2b sinh ¢ b 2 5 2ma b
% cosh —~
il 3m 0 4 ra
) g E G
sin —— + — sin—— — - |.
3 sinh 3ma b 4 osh 4ma
inh — —_—
2b 2b

9. Find the temperature of the middle point of a thin square plate whose
faces are impervious to heat; 1st, when three edges are kept at the temperature
0° and the fourth edge at the temperature 100°; 2d, when two opposite edges
are kept at the temperature 0° and the other two at the temperature 100°; 3d,
when two adjacent edges are kept at the temperature 0° and the other edges at

the temperature 100°. See examples 3, 6, and 8.
Ans., (1) 25°; (2) 50°; (3) 50°.
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60. Let us pass on to the consideration of the flow of heat in one dimen-
sion.

Suppose that we have an infinite solid with two parallel plane faces whose
distance apart is c.

Take the origin in one face and the axis of X perpendicular to the faces. Let
the initial temperature be any given function of x and let the two faces be kept
at the constant temperature zero; to find the temperature at any point of the
slab at any time.

We have to solve the equation

Dyu = a*D?u (1)
subject to the conditions
u=0 when 2=0 (2)
=0 “ x=c (3)
u=f(z) ¢ t=0. (4)
In Art. 49 we have found
w=e"""ginax
and w=e""""cos o
as particular solutions of (1).
uw=e""""tsin ax satisfies (2) whatever value is given to a. It satisfies (3) if

mm
a = — provided m is an integer. Let us try to build a value of u out of terms
c

2, .22

of the form Ae™ " sin -~ which shall satisty (4).
c
We have
f(z) = 2 mioo {sin e Icf()\) sin m—md)\} (5)
Cc — c oy c '
2 m=oQ 7n2a2ﬂ-2t (& )\
u=- [e_ 7 gin L ff()x)sin mr d/\}, (6)
c c c
m=1 0
reduces to (5) when ¢ = 0 and is our required solution.
EXAMPLES.
1. If f(A) =b, a constant, (6) Art. 60 reduces to
4b _a?x2¢ . T 1 _9a2x2¢ . 37T.f 1 _ 257242t . Sz
u:—[e 2 sin— + e 2 siIn—— + —e 2 sm——l—-~-]
s c 3 c ) c

2. An iron slab 10 cm. thick is placed between and in contact with two
other iron slabs each 10 cm. thick. The temperature of the middle slab is at
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first 100° throughout, and of the outside slabs 0° throughout. The outer faces
of the outside slabs are kept at the temperature 0°. Required the temperature
of a point in the middle of the middle slab fifteen minutes after the slabs have
been placed in contact. Given a? = 0.185 in C.G.S. units. Ans., 10°.3.

3. Two iron slabs each 20 cm. thick one of which is at the temperature 0°
and the other at the temperature 100° throughout, are placed together face to
face, and their outer faces are kept at the temperature 0°. Find the temperature
of a point in their common face and of points 10 cm. from the common face
fifteen minutes after the slabs have been put together.

Ans., 22°.8; 15°.1; 17°.2.

4. One face of an iron slab 40 cm. thick is kept at the temperature 0° and
the other face at the temperature 100° until the permanent state of tempera-
tures is set up. Each face is then kept at the temperature 0°. Required the
temperature of a point in the middle of the slab, and of points 10 cm. from the
faces fifteen minutes after the cooling has begun. Ans., 22°.8; 15°.6; 16°.7.

61. If the faces of the slab treated in Art. 60 instead of being kept at the
temperature zero are rendered impervious to heat, the solution of the problem
is easy.

In this case we have to solve the equation

Diyu = a*D?u
subject to the conditions

D,u=0 when x2=0
D;E’U, = O “ xr=c
u=f(z) ¢ t=0.
We have only to use the particular solution
u=e"""cosax

as we used w=e"7ginazx
in Art. 60. We get
211 ¢ "e2°/ _ m2a?q2 mrx mm
u= c[zoff()\)d/\Jr 3 (e # cos ff()\) cos d/\ﬂ. (1)

m=1 0
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EXAMPLES.

1. Solve example 2 Art. 60 supposing that the outer surfaces are blanketed
after the slabs are placed together so that heat can neither enter nor escape.
Find in addition the temperature of the outer surfaces fifteen minutes after the
slabs are placed in contact. Ans., 33°.3; 33°.3.

2. Solve example 3 Art. 60 on the hypothesis just stated, getting in addi-
tion the temperatures of points on the outer surfaces.
Ans., 50°; 33°.9; 66°.1; 27°.2; 72°.8.

3. Solve example 4 Art. 60 supposing that heat neither enters nor escapes
at the outer surfaces after the permanent state of temperatures has been set up.
Find also the temperatures of points in the outer surfaces.

Ans., 50°; 39°.7; 60°.3; 35°.5; 64°.5.

4. Show that if v = 0 when © = 0, D,u = 0 when z = ¢, and u = f(x)
when t = 0,

C

2" <[ _emin22+2  (2m+ )7z . (2m 4 )7
== S T FON) sin————2an ).
u=- Z (e 1 sin P Off( ) sin 5

Suggestion: Assume u = 0 when z = 2c and f(2¢ — z) = f(z), and see (6)
Art. 60.

62.  If the temperature of the right-hand face of the slab considered in
Art. 60 is a constant v instead of zero we have only to add to the second
member of (6) Art. 60 a term uy which shall satisfy the conditions

Dyuy = a?D?uy (1)
up =0 when =0 (2)
up =0 “ o t=0 (3)
uy =1y Y z=c (4)

up = e obviously satisfies (1), (2), and (4); to make it satisfy (3) as well
we must agd a term wuy which shall be equal to zero when z = 0 and when x = ¢
and to — 1% when t = 0, while always satisfying (1). It is given immediately by
(6) Art. 66 and is

m=oo C
2y _m2a2x2¢ | MAX .
uy = —— E e <2 sin j A sin
c c

m=1 0

m:/\d)\) (5)

C
A 2 2
J)\sin T2 aN = —<— cosmm = (—1)m+1c—,
¢
0

mm m
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27 = (—l)m _ nL2a27r2t . mTnx
d =— E —_— 2 — . 6
an ur = — 2 < - sin — (6)
2" (D)™ m2a2a2
Hence up =y {x + - E (He_ < sin mﬂx)]. (7)
¢ m = m c

If the left-hand face of the slab considered in Art. 60 is to be kept at a
constant temperature 3 and the right-hand face at the temperature zero we can
get the term uz which must be added to the second member of (6) Art. 60 by
replacing v by 8 and z by ¢ — z in (7). We then have

— 2"’ m2a?n2t
ug = [C - - Z (e_ <z sin m;m:)} (8)

EXAMPLES.

1. Show that if u = 8 when = 0, u = v when z = ¢, and v = f(z) when

X 2 Ll _1 m 77L27r2a2t . mmx
u=ﬂ+(7—5)[+ <( e Wﬂ
C Vs 1 m C
2 "L SLPLELH e mmA
<e in 27T dA)

2 gin
2. Show that if u =  when z = 0, u = 0 when ¢t = 0, and D,u = 0 when
r=c

4 m=0o0o

1 _emin2a?x2e  (2m 4 1)7x
= 1—— c2 _—
u ﬁ[ Wﬂ;}(mHe g, Ot )]

6 1 4 7a27r22t . T i 1 79(1.275 t 3rx 4 ]. 25a2;r2t . bmx i
= — — (e 2T gin— + e 4? sin— + — 22 sin—— 4+ -+ .
s 2c 3 2c 5 2c

63. If the temperature of the right-hand face of the slab just considered is
a function of the time instead of a constant and the temperature of the left-hand
face is zero the problem can be solved by a method nearly identical with that
of Art. 51.

Let ¢(x,t) be a function of z and ¢ which shall be zero if ¢ is less than zero
and shall be equal to

x R _m2a2x2: . ML
-4 - E c2 sin
71' c
m=1
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[v. (7) Art. 62] if ¢ is equal to or greater than zero. So that

Sa,t) =0 if t<0
d(x,t)=0 ¢ ¢t=0 wunless z=c
dlz,t)y=1 ¢ ¢t=0 and z=c
dlz,t) =1 ¢ x=c
d(z,t) =0 “ x=0.
Precisely as in Art. 51 we get
k=n
—kr) — (k41
= k=0

as the required solution of our problem, n being as in Art. 51 the largest integer

t
in — where t is any given value of the time.

pu
On our hypothesis the last term of (1), that is, —F(n7)¢[z,t—(n+1)7] = 0;
the next to the last term F(n7)¢(x,t — n7) has for its limiting value

r 2"/ (-D)™ | mmx
C+W2(m Slnc>],

m=1

F(t)p(x,0) = F(t)

while as in Art. 51 the limiting value of the rest of the sum is

t

- IF(/\)D,\qS(x, t — A)d.

0
2021 "= m —m2axyy . MMAT
Dyp(z,t —A) = —5 Z (=1)"me™" 2 sin .
c
m=1
Hence
2 m=0o0 _1 m
u:F(t){x—i— <( ) blnmﬂ-x)]
c = m c
2027 "= (—1)™msi mw:ch()\) _ m?a2s? (-2 g
— —1)"msin e e ,
c? m=1 ¢ 0

t ’Wl2(l27\'2
B [Foye ™ (t’\)dAﬂ. 2)
0
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If we substitute § = an (t—\) we get
m2a27r27
2" (-1 . mrx < Be
=ZF(t)+= —= | F(t)- PR(t 3
m C(t)+7rm_1[ —— sin (() Ofe ( o 3 (3)
EXAMPLES.

1. If the temperature of the left-hand face is a function of ¢ and the tem-
perature of the right-hand face is zero and the initial temperature is zero

m2a2772t

O L I R S|

0

2. If the temperature of the left-hand face is a function of ¢, the initial
temperature is zero, and the right-hand face is impervious to heat

“= % mzz_: {2m+1 n 2 ;cl)m (F(t)

2,22
S f o <H>dk>} |
0

4c2

3. If in Arts. 60-63 we are dealing with a bar of small cross-section and of
length ¢ and heat is radiating from the surface of the bar into air at the temper-
ature zero so that Dyu = a®?D2u — b*u, show that: (a) the second members of
(6) Art. 60 and (1) Art. 61 must be multiplied by e~*"; (b) equation (7) Art. 62
becomes

31 - m=o0

sinh . Y . m _m242x2¢ . MTX

Uy = Y4 ——2=+2a°me E (-1) ST 53 5¢ 2 sin ;

., be b2c? + m2a2n c
smh — m=1

a

(¢) equation (2) Art. 63 becomes

L T
sinh — . mmnx
u= b t) 4 2a*7 E {bQCQ—i—mQaQﬂ'QSH . {F(t)
smh—
a

2.2 2 ¢
_b262+ma7f J‘e b2e 2+m222(t )\)F()\)d)\:|}
0
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64. The problem of the motion of a finite stretched elastic string of length
I fastened at the ends and distorted at first into some given curve y = f(z), and
then allowed to swing, has been treated and partially solved in Art. 8.

The complete solution is easily seen to be

N‘M

ZZ: % cos mmat f ) sin —d)\ (1)

0

21
The second member of (1) is a periodic function of ¢ having the period —.

a
The motion, then, unlike that in the case of an infinite string (Art. 55) is a true

vibration, a periodic motion. The period — is the time it takes a disturbance

to travel twice the length of the string (v. Krt. 55).

A careful examination of (1) will show that the actual motion is a good deal
like that in the case considered in Art. 55. The original disturbance breaks up
into two waves one of which runs to the right until it reaches the end of the
string and is then reflected, and runs back to the left or the under side of the
string, while the other wave runs to the left and is reflected at the left-hand end
of the string and runs back to the right under the string and is again reflected,
runs back to the left over the string and so on indefinitely.

If the curve into which the string is distorted at the start is of the form

mmTx
y = bsin 7 the solution is

mmat

y:bsin@cos T (2)

No matter what value ¢ may have the curve is always of the form

y = Asin @
that is, for different values of ¢ we have a set of sine curves differing only in
the amplitude and not at all in the period of the curve. In this case either the
whole string if m = 1, or each mth of the string if m is not equal to one, rises
and falls, and there is no apparent onward motion. When this is the case we
are said to have a steady vibration.

If m = 1 we get steady motion of the string as a whole and if the vibration is
rapid enough to give a musical note the note is said to be the pure fundamental
note of the string. If m = 2 the vibration is twice as rapid as when m = 1, the
middle point of the string does not move and is called a node, the two halves
of the string are in opposite phases of vibration at any instant, and the note
given is an octave higher than the fundamental note and is called its pure first
harmonic.

If m = 3 the vibration is three times as rapid as in the first case, there are

l 21
two nodes x = - and x = 3 and the note is the pure second harmonic of the

fundamental note.
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For any value of m the vibration is m times as rapid as when m = 1, there

2l m—1
are m — 1 nodes at the points t = —,x = —,---x = ——1, and we get the
) m m m
m — 1st harmonic of the fundamental note.

It is clear from (1) that no matter what the original form of the string
the resulting vibration can be regarded as a combination of steady vibrations
each of which alone would give the fundamental note of the string or one of
its harmonics, and that the complex note resulting is really a concord of the
fundamental note and some of its harmonics.

A finely trained ear can often recognize in a complex note the fundamental
note of the string and some of its harmonics and is capable of analyzing a
complex note into its component pure notes precisely as Fourier’s Theorem
enables us to analyze the complex function representing the initial form of the
string into the simpler sine-functions which must be combined to form it.

EXAMPLES.

1
1. Show that if a point whose distance from the end of a harp string is —th
the length of the string is drawn aside by the player’s finger to a distance b from
its position of equilibrium and then released, the form of the vibrating string at
any instant is given by the equation

2 m=oQ
2bm Z 1 . mm . mrx mmat
= — — sin — sin cos .
Y (n—1)m> £~ \m? n l l

Show from this that all the harmonics of the fundamental note of the string
which correspond to forms of vibration having nodes at the point drawn aside
by the finger will be wanting in the complex note actually sounded.

2. If a stretched string starts from its position of equilibrium, each of its
points having a given initial velocity, so that we have

y=0 when t=0

Dy =F(z) ¢ t=0
y=20 “ =0
y=20 “ z =1,

the solution of the problem of its vibration is easy and gives

m=o0 l
2 1 . mmrx . mmrat .ommA
Y= E E (m51n l Sin \O[F(/\) Sin ld)\)

l

m=1

3.  Write down the solution for the case where the string is initially distorted
and each point has a given initial velocity.
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65. If we do not neglect the resistance of the air in the problem of the
vibration of a stretched string the differential equation is rather more compli-
cated and the solution is not so easily obtained. The equation is given as (1x)
Art. 1.

Let us solve the problem for the case where there is no initial velocity.

Here we have D}y + 2kDyy = a*D2y. (1)
y=0 when z=0 (2)

y=0 “© z=1 (3)

y=7[f(x) * =0 (4)

Dy=0  “ t=0. (5)

We get particular solutions of (1) in the usual way. Assume y = e***+5t and
substitute in (1). We have
6% + 2k3 = a*a?

as the only necessary relation between 8 and «. This gives

8 =—k++vVa%a?+ k2.

Hence y = eamfkt:tt\/a2a2+k2 (6)

is a solution of (1) no matter what the value of a.

To throw it into Trigonometric form replace « by «i, and since in actual
problems k, which is proportional to the resistance, is very small, take —1 out
as a factor of the radical. We have

y = efkte(am:tt\/aQ(xsz?)i

Since a may be positive or negative we can get
y = e Fsin(ax + ty/a2a? — k2)
and y = e ¥ cos(ax £ t\/a2a? — k?)

as solutions of (1), or by combining these

kt

y = e " sinaxcosty aa? — k2 (7)
y = e M sinazsintyv/a2a? — k2 (8)
y = e ¥ cos ax costy/a2a? — k2 9)
y = e cosaxsint/a2a? — k2 (10)

(7) and (8) satisfy (1) and (2) for all values of a. They satisfy (3) if o« = ?

Let us see if out of them we cannot build up a value that will satisfy (4) and
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(5) as well.

m=o0 l
f@) =2 3 (sin m;mff()\)sin m?dA). (11)
0

m=1

m=o00 l
9 2,242 A
y = je_kt mZ:l (sin m;rac cost ml# — k2. Oj f(N)sin mr d)\> (12)

reduces to (11) when ¢ = 0 and therefore satisfies (

m27r2a2 ) /m27r a?
Dy = — Tokt Z ( W8 k2. sin 272 ging
l
ff sin d)\>
0
27 a2
? cos t\/ — k2. ff sin - ) (13)

When ¢ = 0 the first line of the second member of (13) vanishes but the
second line reduces to
l
j sm d/\)
0

2k (
sin
l m=1
We must, then, introduce into (12) an additional term which shall equal zero
when ¢t = 0 and whose derivative with respect to ¢ shall cancel the term above
when t = 0.
This is easily seen to be

2k "\~
— leW Sln

m=1

m i 22,2
% —kt Tsingy/ LA g2, jf sin mﬂ)\d)\

ml m7ra_k2

Hence our complete solution is

2 m=00 2,22
yzje_kt Z [(cost m;;a — k2

m=1

l
k 22,2 by
+ sinty/ S — k2 ) sin S [ F(A)sin SodA ] (14)

12

Here the fact that e **, which decreases rapidly as t increases, is a factor
of the whole second member shows that the amplitude of the vibration rapidly
decreases.
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Comparing this solution with that given in Art. 64 for the case where there
is no resistance we see that the period of any given term

mmnx m2m2a? )
costy| ———— — k?,
12

Asin

¢
ML cos m7lm in Art. 64.

In other words the effect of the resistance of the air is to flatten somewhat
each component part of the note given by the string. More than this since the
periods of the different terms of (14) are no longer exact submultiples of the
period of the first term, the component notes are no longer in perfect harmony
with the fundamental note of the string, and the ideal perfect harmony between
the fundamental note and its harmonics is not quite realized in any actual case.

When k is very small, as in the case of a fine string, the departure from
perfect harmony is very slight; but in the case of a coarse string or worse still of
an elastic ribbon, where the resistance of the air is considerable, the unmusical
character of the sound is very noticeable.

is greater than that of the corresponding term A; sin

EXAMPLES.

1. Solve Ex. 1 Art. 64 allowing for the resistance of the air.

2. Solve Ex. 2 Art. 64 allowing for the resistance of the air;

= 2.2 2
. m2m2q
sint — k2

2 = 1 . mmx
Tt Z(\/ﬁ“ z e
m= _ A
12 . OJF()\) sin m?dk).

3. Find a particular solution of (1) Art. 65 on the assumption that it is of
the form y = T.X, where T is a function of ¢ alone and X a function of x alone.

66. We pass on now to a couple of problems that require the modification
and extension of Fourier’s Theorem, the cooling of a sphere in air, and the
vibration of a stretched rectangular membrane, but as an introduction to the
former we shall first consider the following very simple problem; to find the
temperature of any point of a sphere whose initial temperature is any given
function of r the distance of the point from the centre, and whose surface is
kept at the constant temperature b.

Here we are to solve
Di(ru) = a*D2(ru), (1)

see [v] Art. 1, subject to the conditions

u= f(r) when t=0 (2)

u=>o “ r=ec (3)
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if ¢ is the radius.
Let v = ru, then our equations become

Dyv =a’D?v (4)
v=rf(r) when t=0 (5)
v = bc “  r=ec (6)
v=0 “  r=0 (7)
Our problem is now precisely that of Art. 62 and we have as our solution
2 = ’77L2(L27l'2 P A
ru=— mzz:l <e > lsin m;rr bf)\f()\) sin m;r d)\)
2¢c =L (_1)771 7m2a27r2t . m7nr
er['i"+7T Z <me <z "sin . ﬂ (8)
m=1
EXAMPLES.

1. If f(r) = b (8) Art. 66 reduces to u = b and there is no change of
temperature.
2. If the initial temperature is constant and equal to g

2c a?x2 mr 1 _4a2x2 27r
- t o . — t .

u=b+ —(B—-0)|le” & ‘sin— — —e¢ 2 ‘sin—
mr c 2 c

1 _90,27r2t . 3rr
+-e 2 'sin—— — -
3 c
3. An iron sphere 40 cm. in diameter is heated to the temperature 100°
centigrade throughout; its surface is then kept at the constant temperature 0°.
Find the temperature of a point 10 cm. from the centre, and find the temperature
of the centre, 15 minutes after cooling has begun. Given a? = 0.185 in C.G.S.
units. Ans., 2°.1; 3°.3.

67. If instead of having the temperature of the surface of the sphere con-
stant, the sphere is placed in air which is kept at the constant temperature zero,
the problem is much more complicated. For in this case the surface temperature
can no longer be simply expressed but is given by a new differential equation

D,u+hu=0 when r=c, (1)

where h is an experimental constant depending upon what is called the surface
conductivity of the sphere.
Our equations, then, are
Dy (ru) = a>D?(ru)
u= f(r) when t=0
D,u+hu=0 when r=c.

—~ o~
= W N
= =
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As in Art. 66 let v = ru; then we have

Dy =a?D?v (5)
v=rf(r) when t=0 (6)
v=0 “ r=0 (7)
1
D,v+ (h - c> v=0 when r=c (8)

2 2 2 2
v=e"%tcosarandv=e"**?

ular solutions of (5) (see Art. 60).

sin ar have already been found as partic-

v=e""sinar 9)

satisfies (7) for all values of a.
Substitute this value of v in (8) and we have

accosac+ (he — 1) sinac = 0. (10)
If ay, is a value of a which is a root of the transcendental equation (10)

2 2
—a oy

v=e bsin ayr (11)

will satisfy (5), (7), and (8).

It remains to see whether out of terms of the form given in (11) we can build
up a value of v which will satisfy (6).

When ¢ = 0 the second member of (11) reduces to sinagr. If then we can
express rf(r) as a sum of terms of the form by, sin axr where ay is a root of (10)

v = Zbke_azo‘ztsinakr (12)

will satisfy all of the equations (5), (6), (7), and (8), and will be the required
solution.

Here, then, we have a new problem analogous to that of developing in a
Fourier’s Series, but rather more complicated, namely, to develop any function

of = in a series of the form E Qm Sin au, x where o, is a root of the equation

¢

(10); or if we call ac = ¢ and hc — 1 = p, where a,, = —~, ¢,, being a root of
c

the equation
¢pcosd+psing =0 (13)
or more simply of

¢ + ptan ¢ = 0; (14)

remembering that the series and the function must be equal for all values of x
between zero and c.
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If ¢y, is a root of (14) —¢,, is also a root.

Since sin ¢—mx = —sin (—%x) the terms of the required development
c c
which correspond to negative roots may be combined with those corresponding
to positive roots, and therefore we need consider only positive roots.
¢ = 0is a root of (14) but as sin0 = 0 there will be no corresponding term

in the development. If we construct the curve

1
y=——2x 15
. (15)
and the curve
y =tanx (16)

T
the abscissas of their points of intersection are values of x which satisfy — +

tana = 0, that is, are roots of equation (14). It is easy to see that there will
always be an infinite number of real positive roots, one for each of the branches
of the periodic curve y = tan x which lie to the right of the origin. The numerical
values of these roots can be obtained by an easy computation. The construction
suggested above shows that as m increases ¢,, will rapidly approach the value

(2m— 1)% if p is positive or if p is negative and numerically less than unity, and
™
(2m + 1)5 if p is negative and numerically greater than unity.

There exist, then, an infinite number of positive real roots of ¢ +ptan¢ =0
and consequently of

accosac+ (he — 1) sinac = 0.
68. The development called for in the last article can be obtained very

easily from a simpler one which we shall now consider, namely, to develop f(x)
into a series of the form

f(z) = arsindrx + ag sin pax + az sin gzx + - - - (1)
where ¢1, ¢a, ¢3- -+ are roots of the equation
¢ cosd+ psing = 0, 2)

the development to hold good for all values of x between z =0 and = = 1.
1
Let us proceed as in Arts. 24 and 27. Call P Az and form n equations
n

by substituting for z in turn in the equation

f(z) = arsingrx + as sin gox + az sin g3z + - - - + ap, Sin gz (3)
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the values Az, 2Az, 3Az, ---nAx; this being equivalent to making the values
of the sum and the function coincide for the n values of = substituted.

To determine any coefficient a,, multiply the first equation by Ax.sin(¢m,
Az), the second by Ax.sin(2¢,,Ax), the third by Ax.sin(3¢,,Az), and so on,
the nth equation by Ax.sin(n¢,,Az); add the equations and compute the lim-
iting values of the terms of the resulting equation as n is indefinitely increased.
This as in Art. 24 is seen to be equivalent to multiplying (3) by sin ¢, z.dx and
integrating between the limits x = 0 and x = 1.

The first member of the resulting equation is

f(x) sin ¢y x.dx;

o

The coefficient of ay, is

1

f sin ¢px sin ¢ z.dx,
0

and of a,, is
1

fsin2 Omx.dr.
0

1 1
jsin Orx sin ¢ v.dr = % f[cos(qbk — ¢m)x — cos(¢g + O )x]da
0 0
_ 1 {Sin(ﬁbk — ém)  sin(¢k + o)
P bk + dm
o Pl COS g SIN Gy — Py SIN Py, COS Py (4)
B O — O
But ¢k cos ¢ + psingr, =0
and O COS Py, + psin ¢, =0 by (2).

Hence the numerator of the second member of (4) is zero, and the coeflicient
of aj vanishes if k is not equal to m.

1

Ojsin2 dmx.dr = %%m[@n — sin ¢y, €08 Py ] = % [1 - Si;jjm] : (5)
2 ( .
Therefore Uy = S, Ojf(x) sin ¢ x.di. (6)

2¢m
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The coefficient of the integral in (6) can be transformed as follows so as not
to involve trigonometric functions.

G COS Oy, + psin ¢, = 0, by (2)
Om cos? Om + g sin 2¢,,, = 0,

sin 2¢,, cos? o,

20m D

¢72n cos Gm = p2 sin® Gms

(67 + P*) c08® = p?,

cos? ¢ )
== 2° (8)
p P + P
Hence by (7) and (8)

_sin2¢, 47, +plp+1)

1 2¢m gn+p2 '
262, +9%) o
and Ay, =L o) sin g, a.da. 9
¢%1+p(p+1)0jf( )sing ®)

Therefore our required development is

N[ 20m P ( ,
f(z) = Z (MM sin ¢mx!f(a) smq{)ma.da) (10)

m=1
From (10) it easily follows that for values of x between 0 and ¢

f(z) =a; sinaix + ag sinasx + agsinasx + - - - (11)

2 a2 4p? .
where Ay = EW b[f()\) Sin Oém)\.dA, (12)

and «,, is a root of the equation
accosac+ psinac = 0. (13)

It is to be observed that if p is infinite (13) reduces to sin ac = 0, o, becomes
mm
— and (11) and (12) give our regulation Fourier sine series (v. Art. 31), and
therefore the ordinary Fourier development in sine series is merely a special case
of the problem just solved.

Moreover since the Fourier method of determining the coefficients of such a
series requires that
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C
j Sin o, sin a, x.dx = 0,
0

. sin(ay, — ap)c  sin(ay, + ay)c
that is that (@m n) _ (m n) -0
Uy — Qi A + Qi

) QU CCOS QppC Uy € COS (U C
or reducing, that =

sin oy, ¢ sin ay,
or that a,, and «, should be roots of the equation

QCCOos ac

sin ae

where p is some constant, it follows that we have obtained in (11) the most
general sine development that can be obtained by Fourier’s method.

EXAMPLES.
1. Show that the solution of the problem of Art. 67 is
ru = Z bmefazafnt sin a, 1,
m=1

2 a2+ (he—1)?
h by = = am
where ¢ a2,c®+ he(he —1

) I)\ F(\) sin am.dX
0

and o, is a root of
accosac+ (he — 1) sinac = 0.

2. If the initial temperature of the sphere is constant and equal to 3

m=oo
— 2 2 .
ru = E be”* “mtsin a,,r
m=1

a2.c?+ (he —1)% sina,e
“aZ,c?+ he(he—1)" a2,
28he (02,2 + (he — 1)?]3
Qa2+ he(he—1)

where bm = 20h

3. If the temperature of the air is a constant « instead of zero the surface
equation of condition is

D,u+h(u—+)=0 when r=c.
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The substitution of u; = u — 7y, however, brings the problem under Ex. 1
and we get

E be” % “mtgin a,,

2 oz202—|— c—l
where bm—g 2.2+ he(he — 1) fx\ ~] sin cup A dA.

4. An iron sphere 40 cm. in diameter is heated to the temperature 100°
centigrade throughout; it is then allowed to cool in air which is kept at the
constant temperature 0°. Find the temperature at the centre; at a point 10 cm.
from the centre; and at the surface; 15 minutes after cooling has begun. Given

1
a?=0.185 and h = 00 in C.G.S. units. (v. Ex. 3, Art. 66.)
Ans., 97°.67; 97°.36; 96°.46.

5. Show that if in the slab considered in Art. 60 one face is exposed to air
at the temperature zero, so that we have Dyu = a?D?u, u = 0 when z = 0,
u = f(z) when t =0, and D,u + hu = 0 when x = ¢, then

—a?a? .
u = E ame” % ¥mtgin ay,x

c

2 2
QO + 1 [ £V sin o ddx,

h p=2—som TV
where “ a2 c+ h(hec+1) J

., being a root of accos ac + hesinac = 0.

6. If in the problem of Art. 57 heat escapes from one side of the plate into
air at the temperature zero so that we have D2u + Dju =0, u =0 when x =0,
u = f(z) when y =0, and Dyu + hu = 0 when z = a, then

m=00
U= Z ame” Y sin a,, T
m=1
a2 +h?
a2 a+ h(ha+1)

a

[ £ sinamA.dn,
0

where Ay, =

., being a root of aa cosaa + hasinaa = 0.

7. 1If in the problem of Art. 59 there is leakage at one side of the sheet so
that we have D2V + D2V =0,V =0 whenz =0,V = 0 wheny = b, V = f(x)
when y =0, and D,V 4+ hV = 0 when x = a, then

sinh a,,, (b —vy) .
V= Z N @b sin au, .,

where a,, has the value given in Ex. 6.
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69. If we have an infinite solid with one plane face which is exposed to air
at the temperatures U = F'(¢) and heat can flow only at right angles to this face,
we can solve the problem readily for the case where the initial temperatures are

zero. We have
Dyu = a*D?u

subject to the conditions

u=0 when t=0

and Dyu+h(U—u) =0 when z=0.
Let v=u— %Dzu. (1)

Then v will satisfy the equation
Dy = a’D?v,

and we shall also have v = U when z = 0.

Since U = F(t) -2 T S o (e dp (2)
mce = v = ﬁ ) e 4a2ﬁ2
2aV't

by Art. 51 (10).

Dyu— hu = —hv by (1).
Hence ue T = —hfe_hc”vdx + C;

v. Int. Cal. § 4, page 314.

Determining C by the fact that ue™"* = 0 when 2 = co we have
u = heh® je*hwvda:. (3)

x

Substituting the value of v from (2) we have

2heh® h 2 22
_ —hx —B _
u= NG fe dx If e F (t 4a2ﬁ2) ag, (4)
r 2avE

as our required solution.

For an extension of this method to the flow of heat in two and three dimen-
sions and for the interpretation of the results by the aid of the theory of Images,
see E. W. Hobson, Proc. Lond. Math. Soc., Vol. XIX.
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EXAMPLES.
1. If the temperature of the air is a periodic function of the time, say

pm sin(mat + A,,) and we care only for the limiting value of u as t increases,
show that this value is

hpme™ 1

Pm® : h+— ma sin moaffE @Jr)\m
1 ma)2 mao a 2 a 2

1 /ma T /ma
— —y/—cos | mat — —/— + A | | -
a 2 a 2

v. Art. 52 and Art. 51 Ex. 4.

az - e*(asinbx — bcos bx)
Note that fe sinbzr.dx = pr—
ax b bsinb
and je‘” cosbxr.dx = c*(a 0022 i—; sin b)

v. Int. Cal. Table of Int. (235) and (236).

2. I DIV + D2V =0,V =0when y =0and D,V +h[F(y) —V] =0
when z = 0 show that

heh® T, T x x
= Tz | F(A)dA - ;
VT et [ﬂm—w? 2+ ye)

xT

v. Art. 47 Ex. 1.

70.  The solution for an instantaneous heat source of strength @) at the
point x = X if heat escapes at the origin into air at the temperature zero, so
that D,u — hu = 0 when x = 0, can be obtained by the aid of Art. 53.

Let u = wy + ug where u; is the temperature that would be due to the given
source if we had no boundary at the origin, so that

e 4a’2’t . [Art. 53 (2)]

Dyu— hu = Dzu; — huy + Dyus — hus =0 when 2 =0.
Therefore Dyus — huy = —(Dyuy — huy) (1)

when x = 0.

Q ()\ —z ) _(=a)?
But —(Dyup — huy) = — — —h 1aZt
u (Dyuq up) S/ e

when z = 0.
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This is easily seen to be the value to which

)2
O (G -n) e

2av/mt \ 2a2t

reduces when x = 0, and this last expression is

(D + h)

and therefore satisfies the equation
Dyu = a®D2u; (2)

. _ )2
since ———e~ 42t is the temperature due to a source at x = —A.

2av/ 7t

If, then, we determine us from the condition that

Q A+ _ ()2
Dyus — hup = ——<— —h)e Tt 3
('5) 5] 2a\/ﬁ 2a2t (& 4 ( )

taking care not to introduce any arbitrary constant or arbitrary function of ¢ in
our integration, ug will satisfy equation (2) and condition (1).

Integrating (3) [v. Int. Cal. § 4, page 314] and determining the constants of
integration suitably we get

Q { _Oto)? he [ o Oto)? ]
Uy = e aaZt — 2he™ | e " TaaZt dx|. 4
2 2av/ 7t f )

Therefore the solution of our problem is

x

Q _ -2 _Oa)? ha « _hp Od)?
U= —|e 4t +e 22t — 2he je 1%t dx|. (5)
2av/ 7t

x

If we replace @ by f(A)dX and integrate from 0 to oo we get as the solution
for the case where u = f(z) when t = 0 and z > 0, and Dyu — hu = 0 when
=0

oo

1 « (A=) (Ata)? Ot)?
U= ——on NdA|e™ aazt + e waZt —2he® | eI dx]. 6
sy 700 f ©)

x

For an interpretation of this result by the theory of Images and the extension
of the method to the conduction of heat in n dimensions see G. H. Bryan, Proc.
Lond. Math. Soc., Vol. XXII.
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EXAMPLE.

Show that if v = f(z) when t = 0 and Dyu + h[F(t) —u] = 0 when z = 0
we must take u equal to the sum of the second members of (6) Art. 70 and of
(4) Art. 69.

71.  As another problem requiring a slight extension of Fourier’s Theo-
rem let us consider the vibration of a rectangular stretched elastic membrane
fastened at the edges, that is of a rectangular drumhead.

If two of the sides are taken as axes and the plane of equilibrium of the
membrane as the plane of XY the equation for the motion of the membrane is

D}z =c*(Diz+ D) (1)

see [x] Art. 1.
Let the membrane be distorted at the start into some given form z = f(z,y)
and then allowed to swing. Our equations of conditions are then

z=0 when z=0 (2)
z=0 “ r=a (3)
z=0 “ y=0 (4)
z2=0 “ y=>o (5)
z=flz,y) * t=0 (6)
Dyz =0 « t=0 (7)

We can get a particular solution of (1) by our usual device. Assume

5 — @@ tBytnt

and substitute in (1). We get 72 = ¢?(a? + 3?) as the only relation that need
hold between «, 3, and v, in order that z = e®*+P¥+7* may be a solution. This
gives

v =xcv/ a2+ (2.

Therefore = eam+ﬁyﬂ:ct\/m

is a solution of (1) no matter what values are given to o and g.
Replace a and B by ai and (37 and we have

2= e(aw+ﬂyict\/a2+[32)i
as a solution, and from this we get

z = sin(ax + By £ ct/a? + 3?) (8)
and z = cos(ax + By *+ ct\/a? + 32) 9)
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as particular solutions of (1), @ and ( being unrestricted.
From (8) and (9) we can get solutions of the following forms

z = sin ax sin By sin ct\/ﬁﬁ2
z = sin ax sin By cos ct\/ﬁﬂ2
z = sin ax cos By sin ct\/m
z = sin ax cos By cos ct\/m
z = cos ax sin By sin ct\/m
z = cos ax sin fy cos ct\/ﬁﬁ2
z = cos ax cos By sin ct\/ﬁﬁ2
z = cos ax cos By cos ct\/m,

each of which will satisfy equation (1). The second of these will satisfy also (2),
(4) and (7) whatever values be taken for @ and 5. It will satisfy (3) and (5) if

™ nmw
«a and G are equal — and — respectively.

(10)

If, then, we can so combine terms of the form

mrx . nmw m2 n?

)
— T — +
o sin b cos ¢ > 32

as to satisfy (6) our problem will be completely solved.

This can be done if we can express f(z,y) as a sum of terms of the form
mmx nm
Asin sin —y, the sum and the function being equal when z lies between
a
0 and a and y between 0 and b.

sin

mnx
f(z,y) can be expressed in terms of sin —— by Fourier’s Theorem if we
a

regard y as constant. We have

mmnx

(11)
m=1

where Ay = zoff()\, y) sin mTMd)\. (12)

f(Ay) in (12) is a function of y and may be developed by Fourier’s Theorem.

. nmwy
We h A\y) = by, sin —= 13
e have Fow) = 3 busin ™G (13)
2 p nmwu
where by = 3 Ojf()\,u) sin Td,u. (14)

Substituting for f(A,y) in (12) the value just obtained we have

a b m\
f j Ff,w sin 22 gin bd,u) sin e
0 0

n=oo

22
ab 4
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and

4 m=00 N=00  maz
o= 8555

m=1 n=1

a b
A
nn%:yjd)\jf()\,u)sinm:; sin m;'ud,u)
0 0

(15)

[l . mmxr . nmy m2  n?
Hence z= Ay sin sin ——=coscerty | — + 5 |, (16)

= = ’ a b a b

4 ¢ 2 mmA nmw
where Amn = = Of dA bf f(X, p)sin sin T’udu. (17)
is our required solution.
EXAMPLES.

1. Show that if the membrane starts from its position of equilibrium but
with a given initial velocity impressed upon each point so that z = 0 when ¢t = 0
and D;z = F(z,y) when t = 0 the solution is

1 'R 1 . mrr | nry . m2  n?
z=— Ann sin sin —= sin et/ — + —&
cm T Im?2 2 a b a? b2
m=1 n=1 = 4
2 T2
4 ¢ : mmA nmw
where Apn = = Ojd)\ Oj F(\, p)sin sin b“du.

2. If there is both initial distortion and initial velocity

4 m=o0 N=0o0 2 2
= Z: g mmc sin % {Am n COS Tt 7:—2 + Z—
. m?  n?
+Bm7n sin cmt G/T + b2:|
- 2 mmA nmw
where Apn = Id/\ f F(\, @) sin sin 'udu,
i i r 2 mm nm
and B zijd)\jF A, 1) sm sin —'ud .
n? 0 0 b
cm\| — + =

3. Obtain a particular solution of (1) Art. 71 by assuming z = T.X.Y where
T is a function of ¢ alone, X of x alone, and Y of y alone.
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72. A number of interesting conclusions can be drawn from the results of
Art. 71 and Exs. 1 and 2.

(a) No one of the three values of z is in general a periodic function of ¢,
and consequently a vibrating rectangular membrane will not in general give a
musical note.

(b) A stretched rectangular membrane can be made to give a musical note
by starting the vibration properly. For if the initial circumstances are such that
the solution reduces to a single term, as will be the case if the initial distortion

in the problem of Art. 71 be such that f(x,y) = Ay, psin mre

nmw
sin Ty’ or the

initial velocity in Ex. 1 be such that F(x,y) = By, sin MY sin n%bry’ or the
a

initial distortion and initial velocity in Ex. 2 be the values just given, then the
vibration will be periodic and will have the period

2
T=— (1)
m2 n2
NVt

Since T is a function of m and n and m and n are any whole numbers, the
same membrane is capable of giving a great variety of musical notes of different
pitches. If m and n are both unity we get the lowest note the membrane can
give, which is called its fundamental note. Its period

2 2ab
T, = = 2
! 1 1 cva? + b2 @)
Ve e

If m and n are both equal to k we get

B 2ab ) (3)
keva? + b2’
therefore the membrane can be made to give any harmonic of its fundamental

note.
More than this, since as we have seen

Ty

2
Tmn:
' m2 n2
Nz e

is the period of any note the membrane can give, and since if m and n are
replaced by mk and nk we get

2
ka:,nk = 3 5
L m 4 n
c B _
a2 = b2

the membrane can sound all the harmonics of any note which it can give.
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(¢) In the case considered above, where the solution reduces to the single

term
_.ommx . nmy 4 m2 n? B . m2 n?
z = sin sin & |Amn cos cmt ey + = + B, nsincent oz + |
. a 2a 3a m—1)a .
ifx=—,or —,or —--- or !, z = 0 for all values of ¢, and the lines
m m m m
a 2a m— 1)a
r=— r=—, - x= Q remain at rest during the whole vibration
m m m

and are nodes. The same thing is true of the lines

b 2 3b (n—1)b

y=—9 , Y , Y=
n n n n

73.  If the membrane is square it may have much more complicated nodes
than if the length and breadth are unequal, as in this case the period of any
term of the general solution reduces to

2a
T=——— (1)
evm? +n?
and there will in general be two terms having the same period, and a musi-
cal note of the pitch corresponding to that period may be produced by initial
circumstances that bring in both terms. Thus

. mmTx . nmy crt . cmt
z =sin sin —= | A, cos —/m?2 + n2 + By, , sin —/m? + n?
a a a a
. nTx . mMmmy crt . cmt
+ sin —— sin [Anym cos —V/m? + n? + B, ,, sin —+/m? + n?
a a

a a

is a form of vibration that will give a musical note. Let us write this

cmt . mmx . nmy . nmx . mmny
2z =cos —v/m? + n?| Asin —— sin —= + Bsin —— sin
a a a a a
. cmt . mmx | nmy . nmx . mmy
+ sin —+/m? 4+ n? | C'sin sin —= + D sin — sin (2)
a a a a a

and in studying the forms of musical vibration of which the membrane is capable
we may take A, B, C, and D at pleasure. Consider the simple case where A = C'
and B = D; then (2) reduces to

mmnzT n nmwx m crt
z:<Asin il sin7ry—|—Bsin7TSir17Ty><cos7T\/m2—&—n2
a a a a a
crt
+sin7rx/m2+n2). (3)
a




SOLUTION OF PROBLEMS IN PHYSICS 132

Values of z and y that will reduce the first parenthesis in (3) to zero will corre-

spond to points of the membrane remaining motionless during the vibration
Let us consider a few cases at length

(a)

If m =1 and n = 1, the first parenthesis in (3) becomes

(A—l—B)sm—xsmly
a a
which is equal to zero only when x = 0 or y = 0, or ¢ = a or y = a, that

is, for the four edges of the membrane. If, then, the membrane is sounding its
fundamental note it has no nodes

(b)

If m =1 and n = 2, we have

2 2mx
Asinﬂsinﬂ—FB in ™ sn T — g
a a a a
to give the nodes.
T 21y L. . a .
Let B = 0, then sin — sin —= = 0, which is satisfied by y = 5 and in
a a
a
addition to the edges the line y = — is at rest and is a node
a
IfA=0 2= —isanode.
IfA=10B
2 2
sin i sin Y + sin — e sin v _ =0
a a a
0 Y T T ™
251n—bm—y005— —&-len—c%—bln—y 0
a a a a a
x x
sin ™ sin Ty (cos ULs + cos L) =0.
a a a a

The first factor gives the four edges of the membrane. The second written equal
to zero gives

x ( 773:)
cos — = —cos — =cos (T — —
a
Y e
a a
r+y=a,
which is a diagonal of the square
IfB=-A
T 2y 21w Yy
sin — sin —= — sin ——sin — =0
a a
Y T
COS — = COs —
a a
r—y= 07

which is the other diagonal of the square
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Other relations between A and B will give Trigonometric curves of the form

Y B 9
cos — = —— cos —
a A a
which are easily constructed and which obviously all agree in passing through
the middle point of the square.
We give the figures for a few of the cases

A=0 B:-0 A=-—B
A- D A= 2B 4=

(¢) If m=n =2 we have

2 2
(A + B)sin Tin 2 ¢
a

a

to give the nodes, which are merely the lines

a

= -, d = —
z=g5, and y=g
This form gives the octave of the fundamental note.

(d) If m=1and n =3 we have

3 3
Asinﬁsinﬂ—kBsinﬂsin@:O
a a a a

to give the nodes.

2

If A=0 we get ng and x:§a (1)
2

If B=0 we get yz% and yzg (2)
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If A=-B weget

3Ty . 371z Y
sin — sin —= — sin——sin — =0
a a a
x
sin — sin Ty [4(3032 m_ 1 — 4 cos? ™ + 1} =0
a a a
T
coszﬂ—y C 27T—70
a a

(COSQ — cos E) (COSE—FCOS E) =0
a a a a
or z—y=0 and z+y=a. (3)

1
If A=B we get cos2 Y 4 eos2 TE = 2

a a 2
2 2
or cos Y 4 cos L = -1, (4)
a a

a Trigonometric curve easily constructed.
For other relations between A and B we get more complicated Trigonometric
curves coming under the general form
2w A+ B

2
Acos Y + Bcos = (5)
a a 2

which all agree in containing the points

a a a 2a 2a a 2a 2a
GDGD D m (3D
33 33 33 33
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MISCELLANEOUS PROBLEMS.

I. Logarithmic Potential. Polar Codérdinates.

1. Show that D2V + D2V = 0 becomes
1 1

D}V + =D,V + D3V =0
r r

if we transform to Polar Coordinates.

1 1
2. Ifin D}V + =D,V + =DV =0 (1)
r T
we let V = R.® we get

® = Acosag + Bsinag } ® = Ae®® + Be™? }
or

R=Ar"+Bir @ R = A cos(alogr) + By sin(alogr);

whence
V =r%cosa¢ | V=e*?cos(alogr) |V = coshagcos(alogr)
V =r%sina¢ |V =e*sin(alogr) |V = coshagsin(alogr)
)

1
V=—cosa¢ | V= e~ cos(alogr) | V = sinh ap cos(alog r
,

1
V= " sinag | V =e *sin(alogr) | V = sinhagsin(alogr)
are particular solutions of (1).

3. Show that if V satisfies (1) Ex. 2 and V = f(¢) when r = a

1 m=0oo m
= ibo + mzz:l (2) (b, cosme + am sinme) for r<a

1 " sa\m .
and V= §b0 + mz::l (;) (b cos M + a, sinme) for r > a,

T s

where b, = 71r f f(@)cosmep.dp and a,, = % f f (@) sinmae.deo

4. Show that if V satisfies (1) Ex. 2 and V = f(r) when ¢ =0 and r > 0

17 ¢ cosh o —
= 7L fle d)\f oshon cos a(A —logr).da

1
cosh — ()\ log )

1. ¢ ¢
781 2 Lf cosh(\ logr)fcosgb
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5., fV=1when¢=0and 0<r<1l,and V=0when ¢ =0and r > 1
log r

p, 1087
VORI PR b TN B GO o T G
7|2 . ¢ |2 A
st o 2\/77.sm§

6. If V= f(r) when ¢ =0 and V =0 when ¢ = 3

1 T T sinh(3 — ¢)a
V= ;7L f(eA)d)\Of ~snhBa cos (X —logr).da
1 . 7 ¢ F(eM)dA

- %Sm?,m cosh%(/\ —logr) — cos %(b’

if0<o<p.
7. IfV =0when ¢ =0and V = F(r) when ¢ = 8

1 T s\ . [ sinh ¢a
V= ;7L F(e )d)\of Sinh o cosa(A — logr).da
1 . 7w ¢ F(e)d\

= —sin —

28 B I COSh%()\—IOgT)+COS%¢.

If V=x(r) when ¢ =0 and r < a, V =0 when ¢ = 8, and V = 0 when

dX

V=—sin— j x(ae?) [
20 i) T r 0]
—oco coshB()\ — log g> fcosﬁ

pam

T r g0}
h=(\+1log—) —cos —
Ccos ﬁ< + oga) COos 3

9. IfV:OWhenr:LVzlwherub:(),V:OWhen(b:g

2 1—r2
V="tan! tno|.
- an L_ﬁ_rzcnqﬁ}

10. IfV:Owhenr:l,V:lwhen¢=O,V=1When¢=g

2 1—rt
V="tan | ———]|.
T [27”2 sin2¢]
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11. IfV = f(¢) when r =a, V=0 when ¢ =0, and V =0 when ¢ =

7n ™

V= Zam() inmg¢ if r<a

m=0oQ

V= mz:: am( ) sin WTW if r>a
9 B
where B Of sm dqﬁ and 0< ¢ <p.

12. IV = f(¢) when r =a, V =0 when r = b, V =0 when ¢ = 0, and
V =0when ¢ =, thenifa<r<band0< ¢ < g

e A ) - () o)

m=1

mmo
B

13. If V = F(¢) when r =b, V =0 when r = a, V = 0 when ¢ = 0, and
V =0when ¢ =, thenifa<r<band0< o < g

<’ aFbE r\ 5 a\ 5" . mmwo
B 076
Z {b%ﬁ'fm = [ . " Ay, SIN 3

m=1

B
where A = Zojf(gb) sin do.

mmo
5

14. IfV = x(r) when ¢ =0, V =0 when ¢ = 3, V = 0 when r = a, and
V=0whenr=>b,thenifa<r<band0< ¢ <f

B
where U = % OIF(QS) sin do.

meoo ¢ sinn TB=9)
v — z_: a logb — loga sin mn(logr — loga)
"o mn3 logb —loga
m=1 sinh —————
logb — loga
2 log & mmnx
i
h S — " sin — M __g
where “ logb — loga oj x(ae”) sin logb —loga o

15. IfV =4(r) when ¢ = 3, V =0 when ¢ =0, V =0 when r = a, and
V=0whenr=>b,thenifa<r<band0< ¢ <pg

) mmno
m=oo sinh ——
logb —loga . mn(logr — loga)
= Z m mmf3 st logb —loga
m=1 sinh & &

logb —loga
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log &
2 B mmx
h m=— in——d
where “ log b—loga oj ¢”)sin logb —loga “
II. Potential Function in Space.

1. Show that
flz,y) = —fd fdﬁfd)\ff)\,u cosa(\ — x) cos B(p — y).dp,
for all values of x and y.

2. Find particular solutions of D2V + DiV + D2V =0 in the forms
V = eV cos(ax + By)
V = eVt gin(ax + By)
V =sinh zy/a? + 2. sin(azx £+ By)

V = coshzv/a? 4+ 32.sin(az £ By)
&ec.

3. Given D2V 4+ D2V + D2V =0, and V = f(z,y) when z = 0, solve for
positive values of z.

, Zf (A u)du
Result: =5 j f = T ]%

4. Confirm the result of the last example by showing that if f(x,y) is
independent of y

= f Zf ’\ ” d)‘ (v. Ex. 3 Art. 45).

5. If DIV 4+ D;V + D2V =0, and V = 1 when z = 0 for all points within
the rectangle bounded by the lines * = a, * = —a, y = b, and y = —b; and
V =0 when z = 0 for all points outside of this rectangle, then

2V =

! {ﬁﬂ‘lsinl (a—x)*(b—y)* - 2%[(a—2)*+ (b—y)* + 2?]

ETEACE: (@—2)20b =y +2[a—2)? + (69?2 + 7]
+ L (a+2)*(b—y)? — 2[(a+2)*+ (b—y)* + zg]}

2 (a+2)2(b—y)2+ 22[(a+2)2+ (b—1y)2+ 22

o {W‘Flsin1 (a—2)*(b+y)* = 2°[(a—2)* + (b+y)* + 27|

b+y2 2 2 (a—2)?2(b+y)?+2%[(a —x)2+ (b+ y)? + 2?]
+ L (a+2)2(b+y)? — 2*[(a+ )% + (b+ y)? +Zz]}

2 (a+2)2b+y)2+22(a+z)%+ (b+y)2+ 22
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if —a<z<a,and

no

ey — by { ot @220 —9)’ = 22la—2)* + (b—y)* + 7]
b —y)? (0= 2)2(b—)? + 2[(a— ) + (b~ ) + 27

gyt @t 22— y)? = 2lat 2)* + (b y)* + 7] }
(@ +2)2(b—y)* + 2%[(a +2)? + (b - y)? + 27]
= { -t (@ @20 +y)* = 2[(a—2)* + (b+y)* + 27
(b+y)? (@ —2)2(b+y)* + 2%[(a — 2)? + (b + y)? + 27]

gt @+ 20+ y)? = 2[(a+ @) + (b+y)? + 27] }

(a+2)2(b+y)? +22[(a+2)*+(+y)?+22] )

ifz < —aorz>a.

6. If the value of the potential function V is given at every point of the base
of an infinite rectangular prism and if the sides of the prism are at potential
zero the value of V' at any point within the prism is

4 "R 2 n2 mnx nmy
—Tz L+L . .
—b E Ele aZ T b? §in o smT
m=1 n=
a b n
jd)\jf(/\ ) sin sin bMd,u.
0 0

If V =1 on the base of the prism this reduces to

o . 2m+1)mz . 2n+ Dy

m=o00 n= 5 7 SIn sSin

1075 g ;
2m+1)(2n+1)

m=0 n=0

7. If the value of the potential function on five faces of a rectangular paral-
lelopiped, whose length, breadth, and height are a, b, and ¢, is zero, and if the
value of V is given for every point of the sixth face, then for any point within
the parallelopiped

m2 2
M=00 N=00 sinh 7T(C — Z) — + —
V= Ann a b smmﬂxsnw
m=1 n=1 h > n2 a b
sinhmey/ — + w2
4 ¢ : mmA NI
where A = abofdAoff()\, ) sin sin A dp.

8. If the value of the potential function is given on two opposite faces of a
rectangular parallelopiped and is zero on the four remaining faces, then within
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the parallelopiped

m?  n?
m=00 n=00 sinh7(c — 2) e + ¥ . mrz . nmy
V = Ann sin sin —=
1 7 m?  n? a b
m=1 n=1 sinhmey/ — + —
a b2
b [m? N n?
m=00 n=00 sinhmzy\/ — + —
2
+ B a b gin 7T iy 2TY
= = . m2 N n2 a b
sinhmey\/ — + —
a b2
4 ¢ p mmA NI
where Amn = 7 JdAJf(A, ) sin " sin b du
4 ¢ p mmA nmw
and Brn = 7 Ojd/\ Oj F(A, p)sin sin —Md,u.

9. If the value of the potential function is given at every point on the
surface of a rectangular parallelopiped, what is its value at any point within the

parallelopiped?
III. Conduction of Heat in a Plane.
1. Find particular solutions of Dyu = a*(D2u + D2u) of the forms
u=e @ (@8t sin(az £+ By)
u=e o (@A cos(ax £ By).

2. Given the initial temperature of every point in a thin plane plate, find

the temperature of any point at any time,

_ =)+ (u-y?

4a2ﬂj j w f( p)dp

j dﬂje”fm+2a\[573/+20\[7)

3. For an instantaneous source of strength @ at (A, p)

A=2)2 4 (u—y)?
=7 QQt B -r— v. Art. 53.
Ta

For an instantaneous doublet of strength P at (0, u) with its axis perpendic-

ular to the axis of Y

Pz _224w-w?
= We 202t v. Art. 54.
Ta
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For a permanent doublet of strength P at (0, ) with its axis perpendicular

to the axis of Y
P x _1‘2+(u*y)2

= e 4a2t
2ma? 12 4+ (u—y)?
If the strength of the doublet were Pdu and the heat were uniformly gener-

ated and absorbed along the element du of the axis of Y beginning at (0, u) we
should have

_ P o wQZ(;zy)Q xdp _ P o o2+ (u=y)? A Hr—Y
2ma? 22+ (n—y)? 2ma?

and since dtan~! —2 i

Y is the angle ARA’, where A and A’ are the points (0, u)

and (0, p+du) and R is the point (x,y), u = 0 when = O unless u < y < p+du,

in which case u = 22 if z approaches zero from the positive side; and u = 0
a

when ¢ = 0 except in the element du. If then v = 0 when ¢t = 0 and u = f(y)
when x = 0 we have only to suppose a doublet of strength 2a?f(x)dz placed in
each element of the axis of Y and then to integrate; we get

1 T a2 24uy)? 1/)2

L] i)

L + (k=)

For a permanent doublet of strength F(¢) at (0, ) we have

T _ 2?4 u=y)? _9
u = 87Ta4»0[e 2aZ(t—7) (t—T) F(T)dT.
22 2 t / 24 (u—y)?
_ L zF(0) 267%_’_[#@26_%617 _
2ma? |22 + (u — ) + (1 —y)

From the reasoning above this must be zero when ¢t = 0 except at the point
(0, ), must be 2a2F(t) at the point (0, u), and 0 at every other point of the
axis of Y when ¢ is not zero.

Hence if u =0 when ¢t =0 and u = F(y,t) when 2 =0

u =

1 ¢ xF(u0) 2tuon? xD, F _ 224 u=p)?
- d 4a2(t—7) (.
7lloxzﬂ‘(u—y)e n f f 2¢ T

For an extension of this solution by the method of images to the case where
there are other rectilinear boundaries and for its application to the correspond-
ing problems in the flow of heat in three dimensions see E. W. Hobson in Vol.
XIX. Proc. Lond. Math. Soc.

4. If the perimeter of a thin plane rectangular plate is kept at the temper-
ature zero and the initial temperatures of all points of the plate are given, then
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for any point of the plate

b c
nwp
Ofd/\b[f(/\,u)sm p S — d

if b is the length and ¢ the breadth of the plate.

5. A large mass of iron at the temperature 0° contains an iron core in the
shape of a long prism 40 cm. square. The core is removed and heated to the
temperature of 100° throughout and then replaced. Find the temperature of
a point in the axis of the core fifteen minutes afterward. Given a? = .185 in
C.G.S. units. Ans., 52°.9.

6. If the prism described in Ex. 5 after being heated to 100° has its lateral
faces kept for 15 minutes at the temperature 0° find the temperature of a point
in its axis. Ans., 20°.8.

IV. Conduction of Heat in Space.

1. Show that

1 o0 o0 o0 o0 o0 o0

ﬁfdafdﬁfdfy f X j du f FO v
0 0 0 —00 —00

cosa(A —x)cos B(p —y) cosy(v — 2).dv = f(z,y,2)

for all values of z, y, and z.

2. Show that

f(fE,y,Z) = Amm”p sin

nTY . prv

sin sin —dv,
b c

8 a
where Amnp = — f X
0

for0<az<a, 0<y<b 0<z<ec
3. Obtain particular solutions of Dyu = a?(D%u+ Df/u—i— D?u) of the forms

u=e @@+ ") sin(ax + By £ vz2).
u = e~ (@P+B )t cos(ax + By + vz).
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4. Given the initial temperature of every point in an infinite homogeneous
solid find the temperature of any point at any time.

T T _ 0=+ (u— y) +(v—z)
8@3 s Ld)\ f du j e = FO p,v)dy
— j - dg j e’ dry J z + 2aVt.6, y + 2aV/t.y, z + 2aV/t.6)do
7r2

5. If the surface of a rectangular parallelopiped is kept at the temperature
zero and the initial temperatures of all points of the parallelopiped are given,
then for any point of the parallelopiped

m2 2 p2
_a2ﬂ2< o +:72+57)t sin mnx nmy pTz

u = A npe 5 sin — sin e
m=1 n=1 p=1
8 | - /\ L TR PTY
where mon d! )\fduff N\, w, v sin — = sin Tdy.

6. An iron cube 40 cm. on an edge is heated to the uniform temperature
of 100° Centigrade and then tightly enclosed in a large iron mass which is at
the uniform temperature of 0°. Find the temperature of the centre of the cube
fifteen minutes afterwards. Ans., 38°.4.

7. An iron cube 40 cm. on an edge is heated to the uniform temperature
of 100° and then its surface is kept for fifteen minutes at the temperature 0°.
Required the temperature of its centre. Ans., 9°.5.
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CHAPTER V.1

ZONAL HARMONICS.

74. In Art. 16 we obtained
2= Apm(z) + Bgm(z) (1)
[v. (6) Art. 16] as the general solution of Legendre’s Equation

2 d
(lfxz)d—;foéer(erl)z:O, (2)

m being wholly unrestricted in value and x lying between —1 and 1; where

m(m+1) 2, m(m—2)(m+1)(m+3) ,

pm(@) =1 - ——F—= 41 .
_ m(m—2)(m—4)(ﬂé!+ D(m+3)(m+5) ¢ (3)
and
() = 2 — (m — 1;Em+2)x3+ (m — 1)(m—3)5(!m+2)(m+4)x5
B (m—1)(m—3)(m—5)7(!m+2)(m+4)(m+6)$7+,__ @)
and we found V = 1"p(cosb)

1
V= mpl,n (COS 9)

V =1r"gmn(cosb)

V= (cos9),

'I"m+1 qm

m being unrestricted in value, as particular solutions of the special form assumed
by Laplace’s Equation in spherical coérdinates when V' is independent of ¢; that
is, of the equation

1

sin

rD2(rV) + ng(sin 0DyV) = 0. (6)

For the important case where m is a positive integer we found

z = APy (z) + BQm(z) (7)

I Before reading this chapter the student is advised to re-read carefully articles 9, 10, 13(c),
15, 16, and 18(c¢).
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[v. (10) Art. 16] as the general solution of Legendre’s Equation (2), whence
V =r"P,(cosb)

1
V= um(cos 0)

V =r"Qm(cosb)
1
V= m@m (COS 9)
are particular solutions of (6) if m is a positive integer.

_C2m-1)2m=3)---1[ - mm-1)
Fn(@) = ml T Sem )"
m(m —1)(m — 2)(m — 3)

2.4.(2m — 1)(2m — 3)

emt (9)

[v. (8) Art. 16] and is a finite sum terminating with the term which involves x
if m is odd and with the term involving x° if m is even.

It is called a Surface Zonal Harmonic, or a Legendre’s Coefficient, or more
briefly a Legendrian.

Q) = m! [ 1 (m+1)(m+2) 1

Gt Dem 1)1 |7 2@m+3)
(m+1)(m+2)(m+3)(m+4) 1
24(2m + 3)(2m + 5) m+5

ifx <—1oraz>1.[v.(9) Art. 16.]
It is called a Surface Zonal Harmonic of the second kind.

m—1 m—+1\12
w2 ()]

Q@) = () (@)

w1 246, (m—1)
— —1 2
(=1 3.5.7.---m
[v. (13) Art. 16] if m is odd and —1 < x < 1.
m m+1\72
Qo) = (1) 50
I'(m+1)
m  24.6.---m
= (=1)%
(=1) 135 (m—1)
[v. (14) Art. 16] if m is even and —1 < z < 1.

In most of the work that immediately follows we shall regard x in P,,(z)as
equal to cos @ and therefore as lying between —1 and 1.2

+.--| (10

Pm() (11)

qm ()

qm () (12)

2English writers on Spherical Harmonics generally use p in place of  for cos§. We shall
follow them, however, only when we should thereby avoid confusion.
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75.  In Article 9 the undetermined coefficient a,, of 2™ in P,,(z) was
2m—-1)2m—-3)---1

for reasons which shall
m/!

arbitrarily written in the form

now be given.

In Articles 9 and 16 z = P,,(z) was obtained as a particular solution of
Legendre’s Equation

1-aP2 9% L m 1)z =0 (1)
—2%)— —2x— +m(m z=
dx? dx

by the device of assuming that z could be expressed as a sum or a series of terms
of the form a,z™ and then determining the coefficients. We can, however, obtain
a particular solution of Legendre’s Equation by an entirely different method.

The potential function due to a unit of mass concentrated at a given point
(z1,91,21) is .
V= (2)
V=22 (- y2 t (- o)

and this must be a particular solution of Laplace’s Equation

D2V + D2V + D2V =, (3)

as is easily verified by direct substitution.
If we transform (2) to spherical codrdinates using the formulas of transfor-
mation

x =rcosf
y = rsinf cos ¢
z=rsinfsin ¢ we get
1
V= (4)

/72 — 2rri[cos 0 cos 01 + sin O sin 0y cos(é — ¢1)] + 17

as a solution of Laplace’s Equation in Spherical Coordinates

1
sin? 0

1
rDX(rV) + ﬁDg(sin 0DyV') + Dy*V =0 [xm] Art. 1.

If the given point (z1,y1,21) is taken on the axis of X, as it must be that
(4) may be independent of ¢, §; = 0, and

1
V= (5)
\/12 — 2rrycosf + 17

is a solution of

1
rD2(rV) + 5 Dolsin0DyV) = 0. (6)
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Equation (5) may be written

1 1
V=- (7)
T 1 2
\/1—20059—1—2
r
1 1
or V=— . (8)

T1 r 7“2
\/1 —2—cost + —
T1 Tl

V1 —2zcosf + 22 is finite and continuous for all values real or complex of
z. It is double-valued but the two branches of the function are distinct except
for the values of z which make 1 — 2z cosf + 22 = 0 namely z = cosf + isin 6
and z = cosf — isinf, both of which have the modulus unity and which are
critical values.

1

VT Zicosfi 22
cosf —isinf and z = cosf + isinf for which it becomes infinite; it is double-
valued but has as critical values only these values of z. It is then holomorphic
within a circle described with the origin as centre and the radius unity, and can
be developed into a power series which will be convergent for all values of z
having moduli less than one. (Int. Cal. Arts. 207, 212, 214, 220.)

1

is finite and continuous except for the values of z =

If then r > ry can be developed into a convergent series

2 2
\/1—Tlcos€—|—r;
r r

. . 1
involving whole powers of —.
r

T,m
Let Z pmrim be this series, p,,, of course, being a function of cosf. Then

1 ri®
V==Y pnt
2P
[v. (7)] is a solution of (6). Substitute this value of V' in (6) and we get
ri® it 1 d (. dpm\|
Z Lmﬂ m(m + V)pm, + T 50 do <sm Q—de )] =0.

As this must hold whatever the value of r provided r > r; the coefficient of each
power of r must be zero, and hence the equation

1 d . dpm _
T (sm Hde) +m(m+1)p, =0 (9)
must be true.
But as we have seen in Art. 9 the substitution of z = cos € in (9) reduces it
to

Ppm dpm
(1—2?%) df; - 21‘% +m(m+ 1)py, =0,




ZONAL HARMONICS. 148

and therefore Z=1DPm

is a solution of Legendre’s Equation (1).
1

Ifr <mrm can be developed into a convergent series

2 2
\/1—Tcos¢9—&—r2
T1 7“1

2

. . r
involving whole powers of —.
T
1

,,,m
Let Z pmrT” be this series. Then
1

1 r’m
V==Y pn—
1 Zp T
(v. 8) is a solution of (6); substituting in (6) we get
7 rmo 1 d dpm
o 1 m Tl A a0 inf—— =Y,
2 L;ﬂ+1m(m+ o ¥ T 6 a0 <Sm do )] 0

whence it follows as before that

Z = Pm

is a solution of Legendre’s Equation.

r
But p,, is the coefficient of the mth power of — in the development of
™

(NI

o\ —
r r r r
<1 —2—cosf + 2) according to powers of —, or of the mth power of -
1 1 ™1 r

N

o\ —
r r T
in the development of (1 —2-1cosO+ ;) according to powers of —1, or
r r r
more briefly it is the coefficient of the mth power of z in the development of
(1—2zz+ 22)*% according to powers of z, x standing for cos®f.

(1—2zz+ z2)7% =[1-2(2x — z)}fé

and can be developed by the Binomial Theorem; the coefficient of 2™ is easily
picked out and is

m

2m—-1)2m—-3)---1 o m(m — 1)307"_2
m! 2(2m —1)
m(m — 1)(m — 2)(m — 3)
2.4.(2m — 1)(2m — 3)

m—4

But this is precisely Py, (z). [v. Art. 74 (9)]

Hence P,,(z) is equal to the coefficient of the mth power of z in the devel-
opment of [1 —2zz+ 22]_% into a power series, the modulus of z being less than
unity.
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76. Ifz =1 Pyu(z) =1. Forifz =1 (1 — 22z + 22)2 reduces to
(1 — 2z + 22)~2 that is to (1 — z)~!, which develops into

l+z4+22 428420+,
and the coefficient of each power of z is unity. Therefore
Pu(1) = 1. &

We have seen that if m is even P, (z) contains only even powers of z and
terminates with the term involving z°, that is with the constant term.

The value of this constant term can be picked out from the formula for P, ()

m 1.3.5.-- -1

[v. Art. 74 (9)]. Tt is (—1)% (m=1)

24.6.---m
is clearly the value P,,(x) assumes when z = 0; it is, then, the coefficient of 2™

in the development of (1 4 22)~2; but

, 1, 13, 135, 1357
14,23tz 29 4 6 s _ .
(L4277 5% T954% T 916° T 2468"

w135 (m—1)
2.4.6---m
If m is odd P,,(z) contains only odd powers of z and terminates with the

term involving x to the first power. The coefficient of this term can be picked
m-1  3.5.7.---m

out from (9) Art. 74 and is (—1) =

; or it can be found as follows:—It

and the coefficient of z™, m being an even number, is (—1)

2.4.6.---(m — 1); or it can be found as

dP,
follows:—It is clearly the value assumed by % when z = 0.
It is, then, the coefficient of 2™ in the development of ——-.
1+
z B 3 4 35 5 357,
G127 ~ 2 "2a" T316°
35.7---m

m

and the coefficient of z™ in this development is (—1)"z" m

246 (m—1)
being an odd number.

77. To recapitulate:

_ 135 @m—D)[ , mm—1)
m)! 2(2m —1)
m(m —1)(m —2)(m — 3)
2.4.(2m — 1)(2m — 3)
m(m —1)(m —2)(m — 3)(m —4)(m — 5)

- 2.4.6.(2m — 1)(2m — 3)(2m — 5) L ST

Pm(x)

m—4

(1)

m being a positive integer, is a Surface Zonal Harmonic or Legendrian of the
mth order. It is a finite sum terminating with the first power of x if m is odd,
and with the zeroth power of x if m is even.
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P, (x) is the coefficient of the mth power of z in the development of (1 —
2zz + 22)’% into a power series. Hence if z < 1

(1—2xz+ 22)7% = Py(z) + Pi(z).2 + Py(x).2% + P3(x).23
+ Py(z).2* + P5(2).2° + - + Py (2).2™ + - -

Whence

1 1
\/1"2 —2rrycosf+ry T

1

2
{Po(cos 0) + %Pl(cos 0) + %Pg(cos 0)+---
+ 7niPm(cosH) + - ] if r>mnr

/rnm

2
|:P0(COS 0) + iPl (cos ) + %Pg(cos 0)+---
™ L

Tm
+ r—um(cos o)+ --

} if r<ry.
1

z = Pp(x)

is a solution of Legendre’s Equation

(1-2%)

when m is a positive integer.

and

de2  “dx

d?z

d
Qx—z

V =r"P,(cosb)
P, (cos )

= ,rm+1

(2)

are solutions of the form of Laplace’s Equation in Spherical Coérdinates which

is independent of ¢, namely

rD2(rV) + — L

mDQ(S]H QDQV) =0.

Pn(1) = 1.

Pgm(—a'}) = Pgm(l‘)

Poyy1 (=) = —Pamy1 (7).

Pom (0) = (=1)™

Poms1(0) = 0.

135, (2m — 1)
2.4.6.---2m

35.7.--(2m+1)
2.4.6. - '

(_1)7”

2m
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For convenience of reference we write out a few Zonal Harmonics. They are
obtained by substituting successive integers for m in formula (1).

Py(x) =1

Pi(x)=x

Po) = %(3:52 _1)

Py(x) = 5 (55° — 32)

Py(z) = é(35x4 — 302 + 3) (11)
Ps(z) = %(631‘5 — 702° + 157)

Ps(z) = 1—16(231936 — 3152 + 10522 — 5)

Py(z) = %6(429:57 — 6932° 4 31523 — 35z)

Py(z) = %(6435958 — 120122° 4 69302 — 126022 + 35).

Any Surface Zonal Harmonic may be obtained from the two of next lower
orders by the aid of the formula

(n+1)Pyy1(x) — (2n+ 1)aP,(z) + nP,—1(z) =0 (12)

which is easily obtained and is convenient when the numerical value of z is
given.
Differentiate (2) with respect to z and we get
—(z—1)

m - Pl(m) + 2P2(a’:).z +3P3(l‘).z2 + ...

whence
—(z-2)  _q_, 2)(p op ap ,
A 2mr gy = (7 2024 2)(Pil@) 4 2Py(w)2 + 8Ps(a) 2 4

Hence by (2)
(1 — 22z + 22)(Pi(z) + 2P(2).2 + 3P3(2).2> + - -)
+ (z — 2)(Po(2) + Py(x).2 4+ Pa(z).22 +---) =0 (13)

(13) is identically true, hence the coefficient of each power of z must vanish.
Picking out the coefficient of z™ and writing it equal to zero we have formula
(12) above.?

3For tables of Surface Zonal Harmonics v. Appendix Tables I and II.
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78.  We are now able to solve completely the problem considered in Art. 9.
We were to find a solution of the differential equation

1

2 : _
rDZ(rV) + sin@Do(Sm 0DyV) =10 (1)
subject to the condition
M
V=———— when 60=0. (2)
(@ + )

We know (v. Art. 77) that
V =r"P,(cosh)

and V= P, (cosb)

rm-&-l
are solutions of (1).

For values of r < ¢

M M 172 13+7% 13576 }

S 1— - _ -
(2+12)z ¢ 22 " 24 2468
Therefore for values of r < ¢
M 172
V= - [Po(cos 0) — §C—2P2(cos 0)

1.3 7% 1.3.576
ﬂch4(cos. 0) — —C—PG(COb 0)+--- (4)

is our required solution; because each term satisfies equation (1), and therefore
the whole value satisfies (1), and when 6 =0

_|_

P, (cosf) =P,(1)=1

[v. (5) Art. 77], and hence (4) reduces to (3) and (2) is satisfied.
For values of r > ¢

M M 1¢2 13¢* 1356
My 1é 18 185¢
272 247 2.4.6 r6

(2 +7r2)5 T
1 12 1.3¢* 1.3.5 ¢S ]

:M{f_ff 106 1e0c
r 273 * 2475 24677 +

Therefore for values of r > ¢

Mre 13
V= ~ [;Po(cos 0) — 2,3 Ps(cos8)
1.3¢ 1.3.5 ¢’
P.(cos ) — P+(cos
+ 545 1(cos 0) 54617 s(cos ) + } (6)

is our required solution. For it satisfies (1) and reduces to (2) when 6 = 0.
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79. As another example let us suppose a conductor in the form of a thin
circular disc charged with electricity, and let it be required to find the value of
the potential function at any point in space.

If the magnitude of the charge is M and the radius of the plate is a the
surface density at a point of the plate at a distance r from the centre is

_ M
damva? —r?

g

M
and all points of the conductor are at the potential 7;— (v. Peirce’s Newtonian
a

Potential Function, § 61.)
The value of the potential function at a point in the axis of the plate at the
distance x from the plate is easily seen to be

M rdr
v=="|
a \/(aQ—TQ)(mQ—H“Q)
B 2t —a?
5q €08 T
d(M _1962—@2) M
— | =— cos =
dz \2a 22 + a? a? + 22
M x? ozt S
:—7[ 2t a Ts*"]
a a a a
if x<a,
M a? at  af
__ﬁ[l x2+m4_m6+”]
if = >a.

Integrating and then determining the arbitrary constant we have

cosfleiaQ*M[ﬂ T 8 xP n x7 }
2a 2+ a? al2 a 3a® 5a® T7d”
if z<a,
_ Mya ad a® a’
_?b_@ 525 Ta7 ]
if x>a.

We have, then, to solve the equation

1

S

rD2(rV) + 0D9(Sin 0DyV) =0
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subject to the conditions

2 4 33 o T4l

when 6=0 and r<a

M{a a® a® a’ ]
+...

M|m r 3 o r?
a

F T3 RS T

when 6=0 and 7r>a.

and V=—

The required solution is easily seen to be

Mt r 173 179
Z_p - p _-_p
[2 - 1(cos b)) + 328 3(cos 6) P 5 (cos 0) + }

a

if7’<aandt9<g7

and V=—|-—-—P(cosh) + gr—5P4(cosé') —E

Mla 1a3 1a® 1a”
r 33

Ps(cos§) +}

ifr>a.

EXAMPLES.
1. Given that if a charge M of electricity is placed on an ellipsoidal con-
M
ductor the surface density at any point P of the conductor is equal to ﬁ,
rabe

where p is the distance from the centre of the conductor to the tangent plane
at P (v. Peirce, New. Pot. Func. § 61); find the value of the potential function

at any external point when the conductor is the oblate spheroid generated by
2 2

the rotation of the ellipse = 1 about its minor axis.

2T
Ans. (1) If the point is on the axis of revolution

M { 1( br + a? — b? ) ,1< br — a® + b? )]
V= ——\r=|sin ———————— | —sin —_—
2va? — b2 avx? +a? — b2 avx? +a? — b2

x being the distance from the centre.
(2) If the point is on the surface of the spheroid

M T . (20 —a? M m _1 b
V=—8fo—"|-—sin = — —tan — .
2va? — b2 | 2 a? a? —b2 |2 Vva? — b2
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(3) If the distance r of the point from the centre is less than va? — b? and
T
0 < =
< 2
M
V= T 4 Py (cos )
a?—0b2 2 (a2—-1?)2
Y Py(cost Y py(cost
+m 5(cos )—m 5 (cos )—|—} :
(4) If the distance r of the point from the centre is greater than v/a? — b?
M (a2 —b%)2  (a® —b%)3
V= = [ - B P5(cos )
2 _p2 5 2 3o\I
+(G5T)2P4(COSQ) _(a )2

777“3 Ps(cosb) + - } .

If the conductor is the prolate spheroid generated by the rotation of the
. 2?2
ellipse ) + e

2.

1 about its major axis, show that if the point is an external
point and is on the axis at a distance x from the centre,

_ M o T+ Va2 — b2
2va? — b? gx—\/aQ—bQ.

If the point is not on the axis and r > va? — b2
M 2 _p2 1 2 _p2 )
V= (a )? + (a )ZPQ(COSG)
Va2 —b? r 3r3

2 _p2 s 2 _ 2 z
%pzl(cosg)_k%pdcosgwp.. .

+

80. As a third example we will find the value of the potential function
due to a thin homogeneous circular disc, of density p, thickness k, and radius a.

The value of V' at a point in the axis of the disc at a distance x from its
centre is readily found and proves to be

Vo = 2mpk(V/ 22?2 +a? —x) = %[\/aﬂ +a? — 1.
a

Ifz>a

a2\ 2
\/x2+a2—x(1+2>
x

B 14 1a? 1.1 a* + 1.1.3 a8 1.1.3.5a8 +
-7 242 2422 ' 24645 24682°

3 5 7
and Vo = % {1a 11la 1.1.3a 1.1.35a }

97 2425 | 24620

a 546827
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Ifz<a

202 244l ' 246a0 |
2M r 1z 11z* 11325 113528
d Vo=—|1—-—+=-—= — = — :
an 0 { 5460 246840 & }
Hence the solution for any external point is

oM [1la 1.1a°
V= [zr ~ s le(cos?)

[ 12?2 1.1z* 11328 ]
=a 1+77

a  2a2 24a*

1.1.3 a° 1.1.3.54"
mﬁfﬁ(COS 0) — mﬁpfj(cos 0)+-- ]

if r > a, and

V= % [1 - gPl(cosﬁ)
+ %gPQ(COSH) - %§P4(COS‘9) + %Z—ZPG(COSQ) o ]
ifr<aand9<g-
EXAMPLES.

1. The potential function due to a homogeneous hemisphere whose axis is
taken as the polar axis, is

M [a 3.1a>
V— ; |:7‘ + ﬂﬁpl(cosa)

if r > a, and is

M3 3r r?
V= {2+2aP1(cos9)+aQP2(cos9)

3.1.1¢°

Sy o — _P
T g qgalsleost) = ot alost) + ]
ifr<aand9>g.

156



ZONAL HARMONICS. 157

2. The potential function due to a solid sphere whose density is proportional
to the distance from a diametral plane is, at an external point,

8 M [53a  53.1d°

= —— — 4+ ———=P»(cos¥b
5a |2ar " 24602
5.3.1.1a° 5.3.1.1.3 a”
- ———P 0)+ ———=F, f)—---
246,85 1CosO) 4 55510 7 Loleost)
3. The potential function due to the homogeneous oblate spheroid gener-
2
ated by the rotation of — + g—z = 1 about its minor axis is, at an external
a
point,
3 M 22 4+a® -0 (. _; (a®—b>+bx)
V= — [ sinT' ————=
2= 1) | 2(a2—12)} Py e

+ sin

_1 (a® = b —bx) > ]
A TP TR ) L,
avx?+a? — b2

if the point is on the axis of the spheroid at a distance x from its centre.

V= (a2 S_sz)i l113 « TbZ)é - 3715 - 7~3bz)g Py(cos 0)
+57; (e 75b2 gP4(COS 0) — ]
if r > (a2 — b?)2, and
_% - f’ %Pg(cose) + ;5(G2 f’ : gP5(COS0) - ]

if r < (a®—b?)2 and 0 < g

4. The potential function due to the homogeneous prolate spheroid gener-

2
ated by the rotation of x—z + Z—Q = 1 about its major axis is, at an external
a
point,
3M 1 (@2—b?)z 1 (a®2—b?)2
V = JE— —— P 50
@i |13 7 T35 g lelesd)
1 (a2 —1%)3
+ ETPLL(COSH) +---

if r > (a2 — b?)3.
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81. The method employed in the last three articles may be stated in
general as follows:—Whenever in a problem involving the solving of the special
form of Laplace’s Equation

1
2 — 1 =
rDZ(rV) + sin9D9 (sinfDyV) = 0,

the value of V is given or can be found for all points on the axis of X and
this value can be expressed as a sum or a series involving only whole powers
positive or negative of the radius vector of the point, the solution for a point
not on the axis can be obtained by multiplying each term by the appropriate
Zonal Harmonic, subject only to the condition that the result if a series must
be convergent.

It will be shown in the next article that P,,(cos ) is never greater than one
nor less than minus one. Hence the series in question will be convergent for all
values of r for which the original series was absolutely convergent.

82. In addition to the form given in (1) Art. 77 for P,,(x) other forms are
often useful.

It ought to be possible to develop P,,(cosf), which may be regarded as a
function of €, into a Fourier’s Series, and such a development may be obtained,
though with much labor, by the methods of Chapter II.

The development in terms of cosines of multiples of § may be obtained much
more easily by the following device.

We have seen in Art. 75 that P,,(cosf) is the coefficient of the mth power
of z in the development of (1 — 2z cosf + 22)*% in a power series, and that if
mod z <1 (1—2z cosf+ 22)*% can be developed into such a series. We know
by the Theory of Functions that only one such series exists, so that the method
by which we may choose to obtain the development will not affect the result.

(1 —2zcosf + 22)*% =(1—z(e’ +e7 %) + 22)*%

=(1—2e")"3(1 — ze %) 3.

(1- ze‘”)_% may be developed into an absolutely convergent series if mod z < 1,
by the Binomial Theorem. We have

! 1 1.3 . 1.3.5 . 1.3.5.7 :
(1 o 2’601)_7 1+ 52’691 + ﬂz26291 + 2.4.6236391 + 2.4'6.8246401
. 1 1.3 .
(1—ze %) 3 =1+ 526791 + ﬂ2’267262
135 4 _ap; . 1357 4 _upi
246° ¢ Taa68°°¢ T

The product of these series will give a development for (1 — 2z cosf + 22)’%

in power series. The coefficient of z™ is easily picked out, and must be equal to
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P,,(cosf). We thus get

135 Cm =D e s
P, (cosb) = 546 - 9m {e +e
1 2m . .
- (m—2)6i —(m—2)6i
T am o1 e )
1.3 2m(2m —2) (m—4)0i | _—(m—4)0i
24 @m—DEm—3)° e )+
135---2m -1 1.
P, (cosf) = 35 (2m—1) 2cosm0+27mcos(m—2)0
2.4.6.-- 2m 1L.2m—1)
1. -1
+2 3m(m — 1) cos(m — 4)0

1.2(2m — 1)(2m — 3)
1.3.5 m(m —1)(m — 2)

2123 @m = 1)@m - 3)(@m —3)

cos(m—6)0+---]. (1)

If m is odd the development runs down to cos®; if m is even to cos(0),
but in that case the coefficient of cos(0), that is, the constant term, will not
contain the factor 2 which is common to all the other terms, but will be simply

{1.3.5---(771—1)]2.

24.6.---m
We write out the values of Py, (cos6) for a few values of m
Py(cosh) =1

Py (cosf) = cosd

1
Py(cosb) = 1(3 cos260 4+ 1)

1
P3(cos @) = = (5cos 36 + 3cos b
8

Py(cosf) = 5(35 cos 46 + 20 cos 20 + 9)

Ps(cos ) = 1;78 [63 cos 56 + 35 cos 30 + 30 cos 6] )
Ps(cos ) = 5@[231 cos 660 4 126 cos 46 + 105 cos 26 + 50]

Pr(cosf) = 1094 [429 cos 76 + 231 cos 50 + 189 cos 36 + 175 cos 4]

Pg(cos ) = [6435 cos 80 + 3432 cos 660 + 2772 cos 46

16384

+ 2520 cos 20 + 1225].

Since all the coefficients in the second member of (1) are positive, and since
each cosine has unity for its maximum value it is clear that P,,(cos#) has its
maximum value when ¢ = 0; but we have shown in Art. 76 that P, (1) = 1.
Therefore P,,(cos#) is never greater than unity if 6 is real. It is also easily seen
from (1) that P,,(cosf) can never be less than —1.
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83. P, (z) can be very simply expressed as a derivative. We have

_@m-Dem-3)- 17 . mm-1) .,
Pp(z) = m)! [.23 —mx
m(m —1)(m —2)(m — 3) m—4_...]
2.4.(2m — 1)(2m — 3)
T B (2m—1)(2m—3)1 matl (m+1)m m—1
_()[Pm(x)dx— R {x + T 2.02m-1)
(m+1)m(m—1)(m—2)xm3_...]
2.4.(2m —1)(2m — 3)
IQPm(m)de = fdg;me(x)dx
5 0 0
_@m-1)@2m-3)---1 [xmﬁ(erQ)(erl) m
(m + 2)! 2.(2m —1)

_|_

(m+2)(m+1Lm(m—1) ., _]
2.4.(2m —1)(2m — 3)
2m—1)2m —=3)---1[ 5, 2m@2m—1) 5
2m)! [ T 2em-1) ¢
2m(2m — 1)(2m — 2)(2m — 3) 224 ]
2.4.2m —1)(2m — 3)

x

ijm(a:)dxm =
0

@2m—-1)2m—=3)---1 5, om—a mm—1) 5
= (2m)! {a: —mz + Y ° 4
m(m—1)(m—2) o,
- a0 a0 4 ]

The quantity in brackets obviously differs from (22 —1)™ by terms involving
lower powers of x than the mth.

135 (2m—1) d"

H P e
ence m () (2m)! dx™ (@ "
1A,
or Pn(@) = gy o (@7 = 1™, (1)

This important formula is entirely general and holds not merely when x =
cos 6, but for all values of x.

84.  The last result is so important that it is worth while to confirm it by
obtaining it directly from Legendre’s Equation

2
d” 2x%+m(m+1)z:0 (1)

1—a?)= —
( x)dxz dx

v. (1) Art. 75.
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dz
Let us differentiate (1) with respect to x a few times representing . by 2/,
T

d? a3
d—:; by 2", d—; by 2", &c. We get
d2 / d !
(1 - z?) d; - 2.2m£ +[m(m+1) — 22 =0,
d2 " dz"
(1— 22) d; — 2.3z d’l +[m(m+1) — 201+ 2)]2" =0,
d2z/// dz""
2 _ _ "o_
(1—2%) I 2.4z in +m(m+1)—2(1+2+3)]z 0,
and in general
d2zm) dz(™)
(1—962)# —2(n+ 1)z Zx +mm+1)=2(14+2+3+ - +n)z™ =0
a2z dz(m
— g2 — — (n) —
or (1—2%) e 2(n+1)x T +m(m+1) —n(n+ 1))z 0. (2

Following the analogy of these steps it is easy to write equations that will
differentiate into (1).

dz d?zy d*z3
Let 5o =% i = 5 = = &o. Then
d2
(1- xQ)—d;; +m(m+1)z =0

will differentiate into (1),

d?z dz
2 2 2 _
if differentiated twice will give (1),
d?z dz
(1—2z )dx2 + 2.2z T +[mim+1)—2(1+2)]25=0

if differentiated three times will give (1), and in general

d*zn dzn,
d; +2(n— 1)x£ Fmm+1) —nn—1z=0 (3
if differentiated n times with respect to a will give (1).

If n =m+1 (3) reduces to

(1-?)

d? Zm+1 dzm—i— 1
2
dx? +ema dx

and the (m+1)st derivative with respect to x of any function of x which satisfies
(4) will be a solution of (1). (4) can be written
dz

(1- xQ)d—;n +2maxz, =0

(1-a?) ~0, (4)
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and can be readily solved by separating the variables and integrating. v. Int.
Cal. (1) page 314. It gives

2y = C(z? —1)™.
CdMzy, dM(2? - 1)
~dam ¢ dz™

Hence z (5)
is a solution of Legendre’s Equation (1) and agrees with the value of P, (x)
obtained in Art. 83.

85.  The equations obtained in Art. 84 are so curious and so simply related
that it is worth while to consider them a little more fully.
We have seen that

d? d
differentiates into
d? d
ﬂ—x%%§+2@%—nﬁi+ﬂmz:& 2)

that if we differentiate (2) m times we get Legendre’s Equation

d?z

d
(1 _$2)@ —2x£+m(m+1)z:0; (3)

that if we differentiate (2) 2m times we get

2

(1—x2)d z

d
@g—%m+ww5=m (4)

dz
that if we differentiate (2) m — n times we have

2

(1_$2)dz

dz
@%—Z(n—l)x%—f— [m(m+1) —n(n—1)]z =0; (5)

and that if we differentiate (2) m + n times we have

2

(17$2)dz

) —2(n+1)x%+ [m(m+1)—n(n+1)]z=0. (6)

dx

By the aid of (1) we found in the last article a particular solution of (2), namely
z= (2 —1)™

If we substitute in (2) z = u(x? — 1)™ following the method illustrated fully
in Art. 18, we get as the general solution of (2)

dx

Z:A(x2_1)m+B(x2_1)ij, (7)
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A and B being arbitrary constants.

d
IW is easily written out [v. formula (42) page 6. Table of Inte-

grals. Int. Cal. Appendix]. If z < 1 it vanishes when 2 = 0. If z > 1 it vanishes
when z = co. If then x < 1 (7) can be written

i dx
0

and if x > 1
v dx

and in these forms unnecessary arbitrary constants are avoided.
From (7) we can get the general solutions of (3), (4), (5), and (6).

2= Adm(i; D", de; {(mQ S| (xQ_dfl”)mH} (10)

is the general solution of (3).

d>m(z% — 1)™ dazm 9 m dx
e= AT+ B [(x —1) fi(ﬁ — 1)m+1} (11)

is the general solution of (4).

dm=n(z% — 1) am—n dz
=A B Zopm | ————— 12
z dxmfn + d(Emin |:($ ) J (12 _ 1)m+1:| ( )

is the general solution of (5).

A (e —)m g dz
=A B 2oym | ——— 1
Z dmern + dmern |:($ ) f (xZ _ 1)m+1:| ( 3)

is the general solution of (6).

In each of these forms A and B are arbitrary constants and the integral is
to be taken from 0 to z if x < 1 and from z to oo if x > 1.

Of course (10) must be identical with the forms already obtained in Arts. 16
and 18 as general solutions of Legendre’s Equation.

Equation (4) is so simple that it can be solved directly, and we get its solution

in the form
dx

s=A+Bi Famr

(14)
which must be equivalent to (11).

Comparing (14) with (7), the solution of (2), we see that every solution of
(4) can be obtained from a solution of (2) by dividing the latter by (z2 — 1)™,
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or in other words that if we write (2)

d?z dz
_ 22Tz — _ —
(1-—= )de +2(m 1)a:dx +2mz =0, (2)
d*z dz
. 2 _
and (4) as (1—x%) ol 2(m+ D)z = 0 (4)

2z = z1(2? — 1)™; and the substitution of this value in (2) will give (4), and

@ —1m in (4) will give (2).

the substitution of z; =

We have, then, two ways of obtaining (4) from (2); we may differentiate (2)
2m times with respect to x, or we may replace z in (2) by z1(2? — 1)™.

If we use the first method we have seen that Legendre’s Equation (3) is
midway between (2) and (4). That is if we differentiate (2) m times we get (3)
and if we then differentiate (3) m times we get (4). Let us see if the half-way
equation in our second process is Legendre’s Equation.

m

If z=y(x*—1)2
m
2

and y=z(z*—1)

2=z (x? = 1)™.

m
So that if in (2) we replace z by y(z? —1)2 and then repeat the operation
on the resulting equation we shall get (4). Making the first substitution we find,
d2y 2

dy m

not Legendre’s Equation but a somewhat more general form. Of course its

solution is p
N 2 m 2 m X
y=A@"-1)2 + B(z" —1)2 fm

(2) and (4) are special forms of (5) and (6). Let us try the experiment of
z =

(16)

substituting in (5) z = y(1 — 12)% and in (6) Y . We find that both
(1-22)%
substitutions give the same equation
d*y dy n?
2 _

The solution of (17) can be obtained from either (12) or (13) and is

yo 1 n{Adm”(mz—l)m+Bdm” {(ﬁl)mjdx]}

(1 . :172)5 dxm—n dxm—n (IZ _ 1)m+1

n dnH—n (1.2 _ 1)m dm+n da?
_ 2 R S 2_qym [ ™
Y= (1 T )2 {Al dxm+n + Bl dxm+n |:(.T 1) j (1‘2 — 1)m+1] }
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which of course must be equivalent.

86. In addition to the value of P, (x) given in (1) Art. 83 there is another
important derivative form which we shall proceed to obtain. It is

P, (cosf) = %rm“D;" (i) (1)

1 1
We have seen in Art. 75 that — = can be developed into
r

1—27;1(30894—%
r r

a convergent series if 71 < r and that the (m + 1)st term of that series is
P, (cos@)r®

) . Let us obtain this term by Taylor’s Theorem.
r

1 1 1 1

T 2 7”2727”TC089+7”2: 22 4+ y2 + 22 — 227y + 12
\/1—2“00594-2 \/ ! ! \/ Y ! !
r r

1
Ve P+ 2

Regarding this as a function of (z — r1) and developing according to powers
of 71 by Taylor’s Theorem we get as the (m + 1)st term

—1)m 1 —1)m 1
7< ) r"D' | ———=| or 7( ) D .
m' ‘/x2+y2+22 m' T

Py (cost) (1™ (1
Hence e E D -
87.  We have now obtained four different forms for our zonal harmonic,

a polynomial in x, an expression involving cosines of multiples of 6, a form
involving an ordinary mth derivative with respect to x, and a form involving
a partial mth derivative with respect to x. We shall now get a form due to
Laplace, involving a definite integral.

s

do B T
Ofa—bcosqb B (a? —b2)% (1)

if a® > v? [v. Int. Cal. page 68].
1

1
m can be eXpreSSQd in the form m by taklng a =
—2xz + 2°)2 a® —0%)2

1—zx and b = 2zv/22 — 1 and no matter what value x may have 2z can be taken
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so small that a? will be greater than b2. Then by (1)

1 us
(1—2xz—|—z %_;Ojlfzzfzx/ﬁ 1.cos¢

1 s
Wofl x+\/x2 1.cos @)

1
= ;I[l + (z+ V22 —1.cosg)z + (x + Va2 — 1.(:os¢)2z2
0

+ (x4 Va2 —1.cos)32> 4 - ]d¢

if z is taken so small that the modulus of z(x + Va2 — 1.cos ¢) is less than
1. But by Art. 77 (2) P, (z) is the coefficient of 2™ in the development of
1

)

(1—2zz+ 22)2

hence P (x) = % f[x + — 1. cos ¢|™d¢. (2)
0

P (x) = %f[x — Va2 —1.cos ¢|"de. (3)

1 1 1 1
= — — and if mod — < 1 or in other words
- 3z 3 z
(1 —2xz+ 22)2 (1_233 +*)2
1
if mod z > 1 can be developed into a convergent series

1 1\z
(12l s 1y
;% F Lam
involving powers of —, and the coefficient of (7> will be P, (z); but this will
z z

—m—1

be the coefficient of z in the development of —————— according to

(1-2zz+4 22)2
descending powers of z, mod z being greater than 1.
If now welet a = zx — 1 and b = 2v/22 — 1, a®> — 0> = 1 — 222 + 2% and 2
may be taken so great that a®> — b2 > 0. Then by (1)
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1 —lfﬂ do
(1—2zz+ 22)2 Ty zx—1—2vVa?—1l.cosé
B 1f dé

0 z(z — VaZ — 1.cos ¢) {1 - Az — \/1'217—1.COS¢):|

_ lf 1 [2—1 n 1 -2
T (x—Va? —1.cos¢) (x — Va2 —1.cos @)

1 -3
n +---|d
(x—m.cos¢)2z } ’

d the coefficient of 2™~ is — '

an e coefficient of z 18 ﬂoj[x_m' cos ¢+l
17 d¢

H Po(@) = — ' '

ence (.’I;) e J\ [1' — \/1'27—1‘ COS ¢]m+1 ( )

Replace ¢ by m — ¢ and we get

_1 dé
Frn(2) = T oj [z 4+ V22 — 1. cos ¢p]m+1’ (5)

88. In the problems in which we have already used Zonal Harmonics
(v. Arts. 78-81) we have been able to start with the value of the Potential
Function at any point on the axis of X, and it has been necessary to develop
the expression for V' on that axis in terms of ascending or descending powers of
x. If, however, we start with the value of V' in terms of 8 for some given value
of r, that is on the surface of some sphere, we must develop the function of 6
in terms of zonal harmonics of cos@ (v. Art. 10), and our problem becomes the
following:—To develop a given function of cosf in terms of zonal harmonics of
cos @, or to develop a given function of x in terms of the functions P,,(z), x
lying between 1 and —1.

The problem resembles closely that of developing in a Fourier’s series, which
we have already considered at such length.

Let f(z) = AogPo(x) + A1 Py(z) + A Pa(x) + A3 Ps(z) + - - (1)

for all values of z from —1 to 1 and let it be required to determine the coefficients.
If f(x) is single-valued and has only finite discontinuities between z = —1
and x = 1 we may proceed as in Art. 19.
Let us take n + 1 terms of (1) and attempt to determine the coefficients.
Take n + 1 values of x at equal intervals Az between x = —1 and x = 1 so that
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(n+2)Az =2; f(-14+Ax), f(-14+2Az), f(-14+3Az), .-+ f[-1+(n+1)Ax]

will be the corresponding values of f(z). Substitute these values in (1) and we
have

+ AyPy(—14+ Az) + -+ APy (—1 + Ax)

4 AgPy(—1 4 2A1) + - - + Ay Po(—1 + 2Az) @)

f(l — AJE) = Aopo(l — AZ’) + A1P1(1 — AI) + A2P2(1 — AI) + -
+ A, P,(1 - Azx),

that is, n + 1 equations from which in theory the n + 1 coefficients Ay, Ay, - --
A,, can be determined.

Following the analogy of Art. 24 let us multiply the first equation by By, (—1+
Az).Az, the second by P,,,(—14+2Ax).Ax, the third by P,,(—1+3Ax).Ax, &c.,
and add the equations. The first member of the resulting equation is

k=n-+1
> f(=1+4kAz)Py(—1+ kAz). Az, (3)

k=1
and the coefficient of any A as A; in the second member is

k=n+1
> Pu(—1+kAz)P(~1+ kAz).Az. (4)
k=1

If now n is indefinitely increased (3) approaches as its limiting value

and (4) approaches f Py (z)P(z)dz. (6)
21

We have now to find the value of the integral (6) or as we shall write it for
the sake of greater convenience

j P, (z)P,(x)dz.

-1
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1

89. f P, (z)P(x)dx = ! J dm(@? — )" .dn(xQ — " dx by

2 2m+nmln! J dx™ dxn
(1) Art. 83.

1 1

fdmx - 1m d”(m — 1) dp — dm(z? —1)m d” Ha? —1)n
2 dan N dxm™ dxn—1

-1

dm+1 1‘ _ 1 dnfl(IZ _ 1)n
_ f ppE ) e dr (1)
by integration by parts.
Now if z = X (22 — 1)"
dz dX
= =9 X 2 _ 1 n—1 2 _ 1) ==
T nxX (v I ) o
dX
= (2> - 1" | 2n2X + (2% - 1)— - (2)

Hence the pth derivative with respect to z of any function of = containing
(22 — 1)" as a factor will contain (22 — 1)"~? as a factor if p < n.

dn_l((E2 _ 1)n ) ) )
T then, contains (z* — 1) as a factor and is zero when z =1
and when x = —1, so that (1) reduces to
1
dm _]_m dn _1 dm-i-l _1 dn—l 2_1n
f (22 (22 _ j (z2 . (x ) d.
2 d xm+1 dl‘"_l

It follows that

fl dm(z? —1)™ d*(2? — 1)
1

dxm™ : dxm dx

dmHP(z? — )™ dnP(2? — 1)n
_(_1\P
=(-1) j g . e dzx

= (=17 | A et S et MY

dxm—p ’ dantp

If m < n we get from (3)

1 1
(22 71 d”(fol)" a? — 1™ d"m(a? - 1)"
de = (-1)™ . d
fl dx™ v j1 dx2m dxn—m *

dn—m—l (.Z‘Q _ 1)71
dxnfmfl

- (—1)’”(2m>![ 0,
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since

Ifm>n

1
dm(I2 _ 1)m dn(.’EQ _ 1)n dm—7z(x2 _ 1)m d2n(.232 _ l)n
. = —1 n N
f dz™ dx™ do =(=1) f dxm—n dx2n

-1 -1

1

dx

dm—n—l (12 _ 1)m
dxm—n—l

=0.

= (—1)”(271)!{
If, then, m is not equal to n

j Py (2) Py (2)dz = 0. (4)

1
If m = n we have to find f[Pm(x)Fdx.
41

1 fl dm (22 — 1)™ d™ (22 — 1)™

22m ()2 dxm™ dx™

1
[ [P ()2d = dz.

-1

1 1
dm($2 _ 1)m dm($2 _ l)m d2m($2 _ 1)m 9
. de =(-1)" | ——————. —1)™d
_fl dz™ dz™ z=(=1) j dz?m (2 )" dz

1
by (3), = (=1)™(2m)! j(:cz —1)"dz.
-1

_jl(xz —1)"dz = j(x —1)"(z + 1)™da = —m_fl(x — 1) Yz + 1) dy

-1

m! ; m
- (fl)m(er1)(m+2)”.2m£(3}+1)2 e
(1 22mt1m)

(m+1)(m+2)---2m+1)

(—1)™(2m)!(—1)™ml22m+1
22m(m!)2 (m+1)(m+2)---(2m+1)

1
Hence f [P (2))2de =
1

1
or f [Py (2))2dz =
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90. The solution of the problem in Art. 88 is now readily obtained, and
we have

2m+1 |

where A = 5 f f(z) Py (x)dx. (2)
21

The function and the series are equal for all values of x from z = —1 to

x =1, and f(z) is subject to no conditions save those which would enable us to
develop it in a Fourier’s Series. [v. Chapter IIL]
Of course (1) can be written

f(cos8) = AgPy(cos ) + A1 Py (cos @) + As Pa(cosf) + - -

1
2 1
where Ay = mt f f(cos )Py, (cos8)d(cos 0)
21

2

or if f(cos@) = F(0)

F(0) =AoPy(cos ) + A1 Py (cos0) + Az Pa(cosf) + - - (3)
2m+1 ¢

where A, = m2—|— J F(6)Py,(cosf)sin6.do (4)
0

and the development holds good from 6 =0 to § = .
If f(z) is an even function, that is, if f(—z) = f(z) (1) and (2) can be
somewhat simplified. For in that case it can be easily shown (v. Art. 77) that

1 1
[ @) Par(@)de = 2 [ () Pos(a)da,
-1 0
1
and that f f(x)Pagrq (z)dx = 0;

-1

so that if f(—z) = f(x)

f(x) = AgPo(z) + Ao Py(x) + AsPa(z) + AgPs(z) + - -- (5)
where Aoy = (4k + 1) j () Pay () da. (6)
0

If f(x) is an odd function, that is, if f(—z) = —f(x) it can be shown in like
manner that

1
where Apjer = (4k +3) [ f(2) Pagy1 (w)da. (8)
0
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If it is only necessary that the development should hold for 0 < z < 1 any
function may be expressed in form (5) or (7) at pleasure.
1
91. We can establish the fact that I P, (z)P,(x)dz = 0 by a more general
1
method than that used in Art. 89.

Let X,,, be any solution of Legendre’s Equation

% [(1 - $2)ZQZC} +m(m+1)z=0 [v. (1) Art. 16].

which with its first derivative with respect to z is finite, continuous, and single-
valued for values of z between —1 and 1, —1 and 1 being included.

Then % [(1 - x2)dflim} +m(m+1)X,, =0 (1)
and % [(1 - xQ)Cgﬂ +nn+1)X, =0 (2)

Multiply (1) by X,, and (2) by X,, and subtract and integrate and we get

X
d d"]dm

[m(m+1)—n(n+1)]fxmxndx: me% {(1—332) =

Integrate by parts,

1 =1
dX dX
1) — 1 X Xndr = | Xm(1—2?)—2 — X, (1 — 2?)—=
1) =i 1) [ X Xde = |12 1 =0 e |
- rx=—1
1 1
dX, dX dX,, dX
- -2 =2 2" 1— 2" "y,
Jl( m)dx dz erJI( z)das dz " (3)
1
Whence | X Xnde =0 (4)
21
unless m = n.
(3) gives at once the important formula
dX,, dX,
1o 2 -, ]

1
X Xpdx =
! v m(m+1) —n(n+1)
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from which come as special cases

de dP"
1 R Lk e i
P (x) Py (x)dr =
J Pt Prla) P ey e (6)
and since Py(z) =1
. (1— 22) dPC,,;(:U)
— x
!Pm(x)da: mm 1) (7)
unless m = 0.
EXAMPLES.
1. Show that
1
JPm(x)dx =0 if m is even and is not zero.
0
=(-1)" ! 551, m if m is odd.

m(m+1)2.4.6.---(m—1)
v. Art. 91 (7) and Art. 77 (10).

2. Show that

P, (z)P,(x)dr =0 if m and n are both even or both odd.

o .

m+4n+1 m! TL!
2

m\Z /n—1)\2
m+n—1 _ 1 |
2 (m n)(m+n+1)(2.> ( 5 )
if m is even and n odd. v. Art. 91 (6) and Art. 77 (8), (9), and (10). cf. J. W.

Strutt (Lord Rayleigh) Lond. Phil. Trans. 1870, page 579.

1
3. Show that I[Pm(a:)]2d:c:
0

i Art. 89 (5).

92. Formula (4) Art. 91 can be obtained directly from Laplace’s Equation
by the aid of Green’s Theorem (v. Peirce’s Newt. Pot. Func. § 48).

Take the special form of Green’s Theorem, [(148) § 48 Peirce’s Newt. Pot.
Func.]

[[Jwv?v - vv2U)dadyd: = [(UD,V — VD,U)ds (1)

where V? stands for (D} + D + D3), D, is the partial derivative along the
external normal, and the left-hand member is the space-integral through the
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space bounded by any closed surface, and the right-hand member is the surface
integral taken over the same surface. (v. Int. Cal. Chapter XIV.)
If U and V are solutions of Laplace’s Equation V2V = V2U = 0 and (1)
reduces to
[WD,v - vD,U)ds =o. (2)

Now r™X,, and r"X,, are solutions of Laplace’s Equation if * = cosf
(v. Art. 16).

If the unit sphere is taken as the bounding surface and U = r™X,, and
V =r"X, (1) and (2) will hold good.

DU = D, (r"™X,,) = mr™ 1 X .,
D,V =nr" X,
ds = sin §.dfd¢,

2m T

and (2) becomes f d¢ j(nXan —mX;,Xy)sin6.dd =0
0 0

or 2 (n —m) j XmXpsinf.df = 0. (3)
0
Since x = cosf, sinf.df = —dz and (3) reduces to
1
| X Xpdz = 0t (4)
1

unless m = n.

93. We can now solve completely the problem of Art. 10 which was in
that article carried to the point where it was only necessary to develop a certain
function of 6 in the form

AoPy(cos ) + A1 Pi(cos ) + Az Pa(cosf) + - -

given that FO)=1 from 6=0 to 0= g
and F(0)=0 from ezg to 0=

This amounts to the same thing as developing F(z) into the series

F(fE) = A()Po(l') =+ AlPl(x) —+ AQPQ(.’E) —+ A3P3($) + -

41t should be noted that this proof is no more general than that of the last article, for,
in order that Green’s Theorem should apply to r™X,, this function and its first derivatives
must be finite continuous and single-valued within and on the surface of the unit sphere. (v.
Peirce, Newt. Pot. Func. § 48.)
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where F(z)=0 from z=-1 to =0

and F(z)=1 from z=0 to z=1
By Art. 90 (1) and (2)

1§ 1 1
0 0
(2m+1) ¢
and any coefficient A, = —5 IPm(x)dx
0
By Art. 91, Ex. 1
1
me(x)dx =0 if miseven
0 m=1 1 3.5.7.---m
=(=1)"2 if m is odd.
D T D 2a6 (moT) Imiso
Hence A,, =0 if miseven
m=12m+1 1.35.---(m—2) . .
=(-1) 2 . f dd.
) M 246 (mo1) Imibo
1 3 71 11 1.3
Then F(z) = §+1Pl(x) - §.§P3(x)+ﬁ.ﬂ]35(m) — (1)
1 3 71 11 1.3
and u= 3 + erl (cosB) — §.§T3P3(COS 0) + ﬁ.ﬂr5P5(cos 0)+--- (2)

for any point within the sphere.

94. If in a problem on the Potential Function the value of V is given at
every point of a spherical surface and has circular symmetry® about a diameter
of that surface the value of V' at any point in space can be obtained.

We have to solve Laplace’s Equation in the form

1
rD2(rV) + ng(sin 0DpV) =0 (1)

subject to the conditions

We have f(0) = AgPy(cos ) + A1 Pi(cos ) + Az Pa(cosf) + - -

where A, = @L;l) jf(G)Pm(cos 0) sin 6.d6. v. Art. 90 (4).
0

5See note on page 12.
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Hence

r 2 3
V=2A4+ A (5) Py (cosf) + Ay (E) Ps(cosf) + As (a) P3(cos®) +---(2)
is the required solution for a point within the sphere, and

V =4, (%) + A (%)2 Py(cos )+ Ay (%)SPQ(COSQ) + As (g)4P3(0059) +---
(3)

is the required solution for an external point.

EXAMPLES.

1. If on the surface of a sphere of radius ¢ V is constant and equal to a
ac

show that V = a for any point within the sphere and V = — for any external
r

point.

2. Two equal thin hemispherical shells of radius ¢ placed together to form
a spherical surface are separated by a thin non-conducting layer. Charges of
statical electricity are placed on the two hemispheres one of which is then found
to be at potential a and the other at potential b. Find the value of the potential
function at any point.

a+b 3r 7103
V= 5 +(b—a) {40Pl(cost9) — g.ic—SPg,(cos 0)
11 1.3+5
12.2.4—5P5(coso9) - ]
for an internal point
a+b c 3c? 71c
V= 5 +(b—a) [ 2 Py (cost) — g.irng(cos 6)
11 1.3¢5
12.2.4—6P5((3050) - ]

for an external point.

3. If Vi = f(cosf) when r = a and V; = 0 when r = b show that for
a<r<b

=

m=00 bm+1 P pm+1 am -1
Vi = ZOAm (rm‘*‘l_bm> <am+1_bm> P, (cosb)
1

| @) P

-1

_2m—|—1
2

where A



ZONAL HARMONICS. 177

4. If Vo = F(cosf) when r = b and Vo = 0 when r = a show that for
a<r<b

= am bm am+1 -1
Vo = Z ( B Terl) (am bm+1> Pm(COS 0)

m=0

where B, = j F(z) Py (x)de.

5. If the value of the potential function is given arbitrarily on the surfaces
of a spherical shell but has circular symmetry® about a diameter V = V; + V5
(v. Exs. 3 and 4).

6. Two concentric hollow spherical conductors are insulated and charged.
The inner one of radius a is at potential p, and the outer one of radius b is at
potential ¢q. Find V for any point in space.

V=p if r<a,

L T R
b—al\r b—a r

7. If V =0 on the base of a hemisphere and V = f(cosf) on the convex
surface, show that for a point within the hemisphere

k=00 r 2k+1
V = Z A2k+1 (CL) P2]€+1(COS (9)
1
where Asj11 = (4k + 3) ff )Popy1(x)dx [v. Art. 90 (8)].
0

8. If the convex surface of a solid hemisphere of radius a is kept at the
constant temperature unity and the base at the constant temperature zero show
that after the permanent state of temperatures is set up the temperature of any
internal point is

3r 71r
— 2" P (cosh —
gal1(esd) =155

9. A sphere of radius a and with blackened surface is exposed to the direct
rays of the sun in air at the temperature zero. Find the stationary temperature
of any internal point.

6See note on page 12
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Suggestion: D,u+hu—Mf(#) =0 when r=a.

,r.m
Let =>» A, —P,(cosb), d 0) = ByPny(cosh).
e u Z o (cosd), and f(0) Z (cos @)
Then we have

A

L Pn(cost) +hy ApPp(cost) — MY By, Pp(cosf) =0,
Zm . (cos ) + Z (cos @) Z (cos@) =0
MB,,
— -

h+—
a

Heref(ﬁ):cos01f0<9<gandf(&):Oifg<9<7r.

whence Am =

() = i + %H(cosﬂ) + %&(COSQ) - 3%P4(COSQ) L
(4k + 1)(2k)!
(4K + 4)(2k — 1)22k(k!)

v. Art. 91 Exs. (2) and (3). cf. J. W. Strutt (Lord Rayleigh), Lond. Phil. Trans.
vol. 160, page 587.

+ (—1)F ! 5 Par(cos ) + - --

95.  The formulas of Art. 90 enable us to develop a given function of x
in terms of Zonal Surface Harmonics, the development holding true for values
of x between —1 and +1. If, however, we can show by outside considerations
that a given function of z can be expressed in Zonal Surface Harmonics, the
development holding true for all values of x, the formulas of Art. 90 will give us
the development in question.

For example if n is a positive integer z' can be expressed in terms of
Zonal Surface Harmonics no matter what the value of x, and no Harmonic
of higher order than n will enter. For the formulas giving the values of P (z),
Py(z),--- Py(x) (v. Art. 77) may be regarded as n algebraic equations of the
first degree in terms of z, 22, 3, - 2™ and Py(x), Pa(x),--- Py (2).

From these equations the n — 1 quantities x, 2, 3, .--- 2" !, can be elim-
inated, and there will result an equation of the first degree in 2™ and P (x),
Py(x),- - Py(x), which will enable us to express " in the form

AO + Alpl(.’ﬁ) -+ AQPQ(I‘) —+ e+ AnPn(x),

no matter what the value of x, and we shall have the same formula when —1 <
xr<1laswhenx>1orax<—1.
Let us obtain this development. By Art. 90 (1) and (2)

a" = AoPo(z) + A1Pi(z) + Ae Po(x) + - - (1)
2m+1 .
where Ay = 5 f x" Py (z)dz. (2)

-1

Then A,

1 m(,.2 m
:zmﬂLIngdw by (1) Art. 83.

dxm
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By integration by parts we get

1 1
—-1nHm
j (z* dac:n(n—1)(7”L—2)~-~(n—m—|—1)f&v"_m(l—aﬂ)mdav7
! if m<n+l, ! (3)
=0 if m>n.
By integration by parts we readily obtain the reduction formula
1 9 1
f 2P (1 — 2%)ldx = i f P21 — 29 Y whence
-1 p+l -1

1
n+mdw

( n—m 2\m = 2%m!
_Jl‘x (1—2%) dx—(n_m+1)(n_m+3)...(n+m—1)_~r1
2

1
j "+mdx—7 if n+m iseven,
2 (n+m+1)

=0 if n+m isodd.

2m+1nn—-1)(n—-2)---(n—m+1)

Hence Am:(n—m+1)(n—m+3)(n—m+5)"'(”+m+1)

if m <n+1and m-+nis even,

=0 ifm>norif m+mnisodd.

Therefore

"= n! (2n +1)
= s g |2 D)+ @0 =8 P ()

+(2n—T7) . P,_4(x)
(2n+1)(2n —1)(2n — 3)

2.4.6

(2n +1)(2n — 1)
2

+ (2n —11) Ppg(@)+-| (4)

1
the second member ending with the term m lPo(ac) if n is even and with the
n

term Py (z) if n is odd.

n -+
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For convenience of reference we write out a few powers of x.

¥ =1 = Py(x)
x = Py(x)
z? = %Pg(x) + éPO(z)
2% = %Pg(ﬂ?) + %H(%)
at = %R@) + ;Pz(x) + %Po(@ (5)
25— %p5(x) + gpg(.’t) + %P1(m)
28 = %P@’(l‘) + %sz(x) + %Pz(x) + %PO(m)
o’ = %Pﬂx) + %Ps(x) + %Ps(w) + %Pﬂm)
4 6142385Ps(x) . %45]36(96) N %P4(3;) + ;Lgpz(x) + %Po(x).

If a given function of x can be expressed as a terminating power series it
can be developed into a Zonal Harmonic Series by the aid of (4). Given that
f(z) =ag+ a1z + ax? +agzd + -+,

let f(z) = By + By Py () + ByPy(2) + BsPs(a) + -+ - ;

then picking out carefully the coefficient of P, (z) we have

m! (m+1)(m+2)
135 Cem—1 | 2@mys
(m+1)(m + 2)(m + 3)(m + 4)

2.4.(2m + 3)(2m + 5)

Bm =

Am+4 +--0 . (6)

P,
96. The development of ddnim(l“) is useful and is easily obtained.
dpP,
Let dix) =AoPy(z) + A1 Py(z) + Ay Py(z) + - - -
1
_2m+1 dP,(x)
Then Am == Jl Poy(0) = = do (1)
by Art. 90 (2);
1 1
dP,(x) z=1 dP,,(x)
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[Pm(x)Pn(m)} =0 ifm+niseven

r=—1

=2 ifm+nisodd.

dP,(x)

is an

Since P,(x) is an algebraic polynomial of the nth degree in z,

x
algebraic polynomial of the n — 1st degree in . Therefore in (1) m is less than

dP,, . . S
n; consequently y (z) is an algebraic polynomial in x of lower degree than n
x
and
. AP, (z)

f Po(z) 2 gy = 0 by Art. 95 (3).

k) dx
We get then Ap=2m+1 if m+nisoddand m < n,

=0 ifm+nisevenorm >n—1; and
dP,(x)

pran (2n—1)Py—1(x) + (2n —5)Pp_3(z) + (2n — 9) Py—s(x) + -+ (3)

the second member ending with the term 3P;(z) if n is even and with the term
Py(x) if n is odd.
From (3) a number of simple formulas are readily obtained. For example

dPn+1(’I') B dPn_l(l‘)

= 1) _ o 1 1), () 0
J Pa@)ds = 52 Paca (@) = P (2] o)
(2n + 1)xdpgf) .y ";;(x) + (n 1)o@ "d—;(“) (6)

[v. (4) and Article 77 (12)].
(2% — 1)dPn(x) =nzP,(z) —nP,_1(z) (7)

dz
[v. (5) and Article 91 (7).]

97. By the aid of the formulas of Art. 96 a number of valuable develop-
ments can be obtained.

Let us get cosnf and sinnf, n being any positive real.

z = cosnf and z = sinn# are solutions of the equation

d*z 9
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or if we let x = cos#, of the equation

d*z dz
1-2%)"= — 255 42 = 0. 1
( x)d$2 xdx—l—nz 0 (1)
Let agPy(x) + a1 Py(x) + as Po(x) + - - -

be the required development of cosnf or of sinnf.

m=0o0o 2
Then Z am {(1 - xz)d 5;2(33) - de;nx(l‘) +n%Py(z)| =0 by (1).

m=0

z = Py, () is a solution of Legendre’s Equation (v. Art. 77). Hence

d*P,, () dP,,(z) APy, (x)
02 m . m _ m
(1= dxz? e R

and (1) becomes

—m(m + 1)P,(x),

Y am [dem(x) + [n? —m(m + 1)]Pm(m)} =0. (2)

m=(

Formulas (4) and (6) of Art. 96 enable us to throw (2) into the form

~—

3 4 [ dPual@) -t D dPa@)] g

m=0 "l 2m+1 dx 2m+1 dx o

AP (x)
dx

(3) must be identically true. Therefore the coefficient of must

equal zero, and we have

2m+5 n2 — m?2
2m +1'n2 —(m+3

Amao = E .- (4)
If we are developing cos nf

1 ™
ao = 5 jcos n#sin 0.d6 by Art. 90 (4),
0

[sin(n + 1)0 — sin(n — 1)6]d0,

I
| =
Oy

1 1—|—cosn7r.

— 5
2" n2—-1" (5)

ag =

™

and ay = gjcos n# cos O sin 0.d6 by Art. 90 (4),
0

3 1—cosnm
ag=—=——

2" n?2-4 (6)
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(4), (5), and (6) give us

1
cosnf = % [Po(cos 0) + ﬁpg (cos9)

o n?(n? — 22)
(2 = )2~ )

1 —cosnm n? —12
o0 2% [3P1 (cosB) + 7mP3(cos 0)
(n2 _ 12)(n2 _ 32)

(7 = P)(n? = 67)

Py(cos ) +}

+11

Ps(cose)Jr---]. (7)

If n is a whole number 1 + cosnm or 1 — cosnm will vanish and the series will
end with the term involving P, (cosf). For this case (7) may be rewritten

1 24.6.-
COSTL9—§ YA (2 +1) (2n+1)P,(cosb)
n?—(n+1)>2
+ (2n — 3)mpn_2(cos 0)

[n? — (n+1)?][n? — (n —1)?] Po_4(cosf) + - - } (8)

L e e o e e

If we are developing sin nf

sy

1 1 si
ag = 3 OjsinnHSine.dH = —i.zlznfq,
a; = §jsinn@ cosfsin6.df = § M and
2 0 2'n2 — 22
. 1 sinnm n2
sinnf = —g ] |:P0(COS 0) + 5 32P »(cos )
n?(n? — 22)
+ 9(712 372 = 52)P4(cos€) + - }
1 sinnm n? —12
+2'ﬁ [3P1 (cos ) + 7 e Ps(cos 0)

(n* —1? )( 2 -3
11 Py(cosf) + -+ . 9
+ (2 =) (n? = 67) 5(cos 0) + (9)
If n is a whole number sinnm = 0, and all the terms of (9) vanish except

those involving P,_1(cosf), P, y1(cos), P,i3(cosf) &c., which become inde-
terminate. For this case it is necessary to compute a,_1 1ndependently
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‘We have
Ap_1 = 2n—1 fsin nlP,_1(cos ) sin .dd
: 0
onm—1
= j[cos(n —1)0 — cos(n + 1)8] P,,—1(cos 0)d6.
0
2n—1 1.35.---(2n—3
Hence Op—1 = n4 A6 222 — 2;71’ [v. Art. 82 (1)],
and
o m 13 (2n-3)
sin nd —Zm [(2% ].)Pnfl(COS 0)
n? —(n—1)>2
+ (2n —+ 3)mpn+1(cos 0)
[ — (0 — D2n? = (n+ 1)?]
e D 2 — (w0 ] (0)

EXAMPLES.

1. Show that
1.3.5

cscf = g [1 + 5(%)2P2(COS 0) +9(%)2P4(cos 0)+ 13(—)2P6(cos 0)+

2.4.6
whence

1.3.5

2 24

Vi—a?2 2
[v. Art. 90 (4) and Art. 82].

2.4.6

2. Show that
5

ctnf = g[3<%> 1 (cos 6) +7(%> (%>2P3(cos 9)+11<6> (1%3>2P5(cos 0)+

24

whence

= SR G G A () () e

[v. Art. 90 (4) and Art. 82].

L =T ls(5) B+ 9(50) Puta) +13( 50 ) o) +

|

3. By integrating the result of Ex. 1 and simplifying by the aid of Art. 96

(5), obtain the development
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sin~ta = g [3(%) Pi(z) + 7(%)233(:3)
+ 11(%)2135@) +15( 1‘358)2137(95) o]

2.4.
whence 0= g [Po(cos 0) — 3(%)2P1(cos 0) — 7(%)2P3(cos 6)

2.
—11(%)2.%(0059) —- }

4. By integrating the result of Ex. 2 and simplifying by the aid of Art. 96
(5) obtain

=55 -s () (3)ne o) () e

212 4 6/\24

-13(3) (375) P+

sinf = g %Po(cos 0) — 5(%) (%)2P2(COS 0) — 9(%) (i)QRl(cos 0) — }

To make clearer the analogy of development in Zonal Harmonic Series with
development in Fourier’s Series we give on page 186 a cut representing the first
seven Surface Zonal Harmonics P (cosf), Pa(cosf), --- Py(cos @), which are of
course somewhat complicated Trigonometric curves resembling roughly cos @,
cos 26, --- cos70; and on page 187, the first four successive approximations to
the Zonal Harmonic Series

1 3 71 11 1.3
3 + ZPl(COb 0) — §.§P3(c05 0) + E.ﬂ%(cos 6)—--- [1]

[v. (1) Art. 93], and
g[Po(cos 0) — 3(%)2P1(cos 0) — 7(%)2%((305 0)

- 11(%)2P5(0059) - } [11]

(v. Ex. 3 Art. 97).
1] is equal to 1 from 6 =0 to 6 = g, and to 0 from 6 = g to 0 = 7; and [11]

is equal to 6 from 6 =0 to 6 = 7.
The figures on page 187 are constructed on precisely the same principle as
those on pages 64 and 65, with which they should be carefully compared.
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-5}

~-1

The curves y = Py(cos ), y = Pi(cosf), ...y = Pz(cos0). (v. page 185.)

98. By applying Gauss’s Theorem (B. O. Peirce, Newt. Pot. Func. § 31)
or the special Form of Green’s Theorem,

H V2Vdadydz = anvczs = —dn ﬂ pdzdydz,

[Peirce, N. P. F. § 49 (149)] to a box cut from an infinitely thin shell of attracting
matter by a tube of force whose end is an element of the surface of the shell we
readily obtain the important result

dmpk = D, V1 — D, V5. (1)

where p is the density and x the thickness of the shell, V; the value of the
potential function due to the shell at an internal point and V5, its value at an
external point, and where D,, is the partial derivative along the external normal
to the outer surface of the shell.

If we have to deal with a surface distribution of matter we have only to
replace pk in (1) by o where o is the surface density, whence

4wo = D,V1 — D, Vs (2)

(v. Peirce, N. P. F. §§ 45, 46, and 47).
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L o

0 = 0 L

[ S N ) | )
0 40 %) -
1 N
LT .‘0 S =
y

I 7—[—[--\

Formulas (1) and (2) enable us to solve problems in attraction when we know
the density of the attracting mass, and problems in Statical Electricity when we
know the distribution of the charge, by methods analogous to that of Art. 94.

For example let us find the value of the potential function due to a thin
material spherical shell of density p and radius a.

Since V' must be a solution of Laplace’s Equation and must be finite both
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when r = 0 and » = oo we have
Z Amr (cosb)
Z B,, (cosb).

V1 and V5 must approach the same limiting values as r approaches a. Hence

or B, =
D, Vi =D, Vi = Zmrm_lAum(cos 0),
Ama2m+1
DyVo=D,Va ==Y (m+ )= s P(cost).
Therefore by (1)
drpk = Z(Qm +1)A,a™ Py (cos 6)

if k is the thickness of the shell.

Let p= f(cosh) = Z Cn P (cos )
2m 41 |
where Cp = 5 f f(@) Py (x)dx by Art. 90 (2).
21
Then 41kCpy = (2m + 1) Aa™ ™, and
dmrC ATK
Ap =" d B,=-——-Cpa™"?
m (2m+ 1)am_17 an m om+ 1 n@ >
m Tm
and Vi =4wak Z o+ 1 aP m(cos ), (3)
am+1
and Vo = 4wak Z2m PR —— P, (cosb). (4)

99. We can now get the value of the potential function due to a spherical
shell of finite thickness, provided that its density can be expressed as a sum of
terms of the form Cr¥ P, (cos ).

Let a be the radius of the outer surface and b be the radius of the inner
surface of the shell.

Ist.—Let p = Cr*P,,(cos ). Then for the shell of radius s and thickness ds

C k m
Vi =drsds—— > T — Py, (cos ) by (3) Art. 98,
2m 41 s™
k sm,—i-l

S
2m + 1 rmtl

and Vo = 4msds P, (cosb) by (4) Art. 98.
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Then if r < b
a ArC (ak—m+2 _ bk—nl+2)
V J\V]_ (2m+1) (]f*m+2) r m(COSQ), ( )

)

(ak+m+3 _ bk+7rL+3) Pm(COS 9)

ifr>a
a
47 C
Tm+1

V:J%:@m+n (k+m+3)

andifb<r<a
rk+m+3 _ bk+nz+3
(k+m+ 3)rm+i
akrf'm+2 _ rkfm+2
M\ P, 0).
+ F—m+2) r (cosB). (3)

V:bjr%Jerl:;jfl{

2d—Ifp= Z Cy7¥ P,y (cos 0) the solutions will consist of sums of terms of
the forms given in (1), (2), and (3).

EXAMPLES.

1. If the shell is homogeneous

V =2mp(a® —b?) if r<b,
4 1 M
V=§7Tp(a3—b3);:7 if r>a,
2b3 2
r} if b<r<a.

a?— - =

V:%p{ 3r 3

2. If the density is any given function of the distance from the centre
M

V =—ifr >a,and V = a constant if r < b.
r

3.
of the distance from a diametral plane

3
M[a 2a (cos@)| if r>a.

If the density at any point of a solid sphere is proportional to the square

V="|-+==P
a 7”+7’I“3 2

If the density at any point of a solid sphere is proportional to its distance

4.
from a diametral plane
M[a 1a® 1.1a° 1.1.3 a7
V= - L + éﬁPg(cos 0) — QEPACOS 0) + mr—?Pﬁ(cos 0) —

if r > a. Compare Ex. 2 Art. 80.
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100. We have seen in Art. 18 (¢) (3) that

dx
m = CPm s 1
Qm() @ | = mer (1)
no constant term being understood with f du
© (1= ) [Pu(@)]”
1
is a rational fraction and becomes infinite only for z = 1,
(1= )P (@)]? Y
x = —1, and for the roots of Py, (x) = 0, all of which are real and lie between —1
1 dm 2 _ 1)m
and 1, as can be proved by the aid of the relation P,,(z) = (2 ) .
2mm! dx™
If 22 > 1 f du is finite and determinate and contains no
J (1= a?) [P (2)]?
constant term. Hence if 22 > 1
v dx T dx
m(x) = —Pp, =P, 2
@) = ~Fnl@) | Ty e = @) eommp @
for the constant factor of @, (z) has been chosen so that C' = —1.

If 22 < 1 the second member of (2) is not finite and determinate, and we are
thrown back to the form (1), and C proves to be unity.
(1) gives us readily

1 14+
Qo(z) 508 T (3)
T 1+2x
=—-1+=1 4
Q) = —1+ S log 1 (®)
if 22 < 1.
. 1 r+1
(2) gives us Qo(x) = 3 log o (5)
T rz+1
=—-1+=1
Qi) = ~1+ 3 log (6)
if 22 > 1.
From Art. 85 (10) it follows that
_ o nm ( if z?<1
Qm(l’) dxm™ Z‘ - \OI‘ m+1 1 <l
dm ym T e 2
Cdmm{xl j m+1} if z*>1.
1>m+12m
C' can be determined and is equal to T if 22 < 1, and is equal to
m)!
—1Ymomm|
M if 22 > 1.
(2m)!

_q)ymtlgmp,) gm (_ de
Hence Qm(zr) = ( )(2m)! dxm [(Iz - oj (332—1)7”"’1] ©
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if 22 < 1,

_ (=pm2mmt dm m ([ dz
and Qum(z) = Gl dom [(:ﬁ -1) mf(xz_l)mﬂ] (8)
if 22 > 1.

(7) and (8) give us for Qp(x) and @Q1(x) the values already written in (3),
(4), (5), and (6).
By the repeated application of the formula

(m+ 1D)Qma1(z) — 2m+ 1)zQp(x) + mQpm—1(x) =0, 9)

which may be obtained for the case where 2? < 1 from Art. 16 (13) and (14),
and for the case where 22 > 1 from Art. 16 (9), any Surface Zonal Harmonic
of the Second Kind can be obtained from Qo(x) and Q1(z) as given in (3), (4),
(5), and (6).

Analogous formulas for p,,(z) and ¢, (z) can be obtained without difficulty
from Art. 16 (4) and (5). They are

(m+1)%gmi1(x) = (2m + D)apy (z) — m*gm1(x) =0 (10)
and Pma1(@)+(2m + Dagm(x) — ppm—1(z) =0 (11)

and they hold good for any value of m.

EXAMPLES.

1. Confirm the values of Q(x) and @Q1(x) given in Art. 100 (3), (4), (5),
and (6) by expanding them and comparing them with Art. 16 (13), (14), and (9).

2. If the value of V' on the surface of a cone of revolution can be expressed
in terms of whole powers positive or negative of r, V' can be found for any point
in space, cf. Art. 81.

B,
IfVZE (Amrm+ m+1) when 6 = « then
T

v=%" <Amrm 4+ Bm > Fin(c0s0)

rmtl ) Po(cosa)’

Bm
3. IfV:Z(Amrm+Tm+’ ) when 6 = o, and V = 0 when 6 = §,

B m . Bm Qm(cos )Py, (cos ) — Py, (cos 3)Q(cos )
V= Z <Amr + rmH) {Pm(cos )@ (cos B) — Py (cos B)Qum(cos a)

4. Find V for points corresponding to values of 6 between a and 5 when
V' can be given in terms of whole powers of r for § = « and for 6 = (.
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5. Find by the method of Art. 16 solutions of Legendre’s Equation of the
form

2= Pfo) =14 P o -y ¢ D I D e
m—2)(m—1m(m+1)(m+2)(m+3

U TR TR S UES UL PR

N (m —2)(m — 1)m2(;7(13?;21)(m+2)(m+3) (w14

If m is a whole number, 1 P,,(z) = P, (x) and _1 P, (z) = (=1)"P,,(z). No
matter what the value of m, 1P, (z) is absolutely convergent for —1 < x < 3,
and _1 Py, (z) is absolutely convergent for —3 < = < 1.

6. By the aid of (7) Art. 16 show that

V= % sin(nlogr)k, (cos ), V= % sin(nlog r)l,(cos ),

1 1
V= 7 cos(nlog r)ky(cos @), V= 7 cos(nlogr)l,(cos @),
are solutions of Laplace’s Equation

1 . .
rDZ(rV) + mD@(sm 0DgV) =0, if

1\2 1\2 51 2
() = P14 i) :1+"2 +2!(2) 24 i (5) L["ZJF (5) LA

and

2 § 2 n2 § 2 2 Z 2
SRR | B Lt 73] caa O

L G 7(!3)2] +(3)],

kn(z) and I,,(x) are convergent if 22 < 1, but are divergent if 22 = 1.

7. Show by the aid of Example 5 that

1 1
V= W sin(n logr) K, (cos @), V = —ssin(nlogr) K, (— cosf),

\/F

1 1
V= 7 cos(nlogr) K, (cosb), V = — cos(nlogr) K, (— cos9),
T

NG
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1
are solutions of rD2(rV) + SiWDg(sin 0DyV) =0

112
if Kn(@) =1P_1 pi(2) =1- n2+(2)(x —-1)

and

(z+1)3+

K, (cosf) is convergent except for § = 7, and K,,(— cosf) is convergent except
for 6 = 0.

kn(z), ly(x), K,(z), and K, (—z) are sometimes called Conal Harmonics.
They are particular values of z which satisfy Legendre’s Equation written in the
form 2 p )

z
(1— a2 )dx2 202 - (n2+1)z:0.

For an elaborate treatment of them see E. W. Hobson on “A Class of Spherical
Harmonics of Complex Degree.” Trans. Camb. Phil. Soc., Vol. XIV.

8. If V= f(r) when 6 = 3,

1 00 0o N K. 0 .
W\/;,L d/\ofe2 f(e/\)l(a((((::c.i:[% cosla(A —logr)lda; if 6 < f.

9. IfV =f(r) when 6 = § and r < a, and V = 0 when r = a,

Ko (cos) . r .
\/7 f dAJe2f Cosﬁ) sma)\sm(aloga) da; if 6 <g.
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10. IfV = f(r) when 0§ = 8 and a < r < b, and V = 0 when r = a and
when r = b,

m=oo K, (cos®) . [ma(logr —loga)
v mz::l Ko (cos ) { logb — loga

, mm

- SN d
mn logb —loga o

where

log g

2 a z mnx
Ay=—" /= 2 ygin ———dx; if 0 <.
logb—loga\/: of e2 f(ae”)sin logb —loga o b

11. If @ > B cosf must be replaced by (—cos#f) in examples 8, 9, and 10.

12. If V = f(r) when 0 = 3, and V = 0 when 6§ = ~,

1 ¢ T2
V= W\/F,L d/\ofez £(e)
ko (cos 0)lo(cosy) — ka(cosy)la(cosf) .
ko (cos B)lq(cosy) — kq(cosy)la(cos B) cosfa(A —logr)]day;
if <0 <.

13. 'V = f(r) when ¢ = Band a <7 < b, V =0 when § = v and
a <r<b,and V =0 when r = a and when r = b,

v "~ A ks (cos 0)lms (cosy) — ks (cosy)lms (cos®) . mm(logr —loga)
B — " ks (08 B) i (€08 7y) — Ky (€08 )Ly (cos 3) logb —loga
where m=—"" and
logb —loga

b
og —
mmnx

1

2 a " z
Ap=———/— 2 Vgin ——— "~ dg:
" logb—loga\/; of c2 f(ac )Smlogb—loga w

ifg<f<yanda<r<hb.

14. 'V = f(r) when 0 = fand a <r < b, and V = 0 when r = @ and
D,V 4+ hV =0 when r = b,

m=oo K .
V= Z AmM sin (am log C) , where
S a

log g

202 27,2 z
(Oém + h=b ) f e2f(a6x) sin o r.dx

Ay =
" a2 (logb — loga) + hb[hb(logb — log a) + 1]
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and «,, is a root of the equation

b b
Qo COS (a log ) + hbsin (a log ) =0 v.Art. 68 Ex. 5.
a a
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CHAPTER VL.

SPHERICAL HARMONICS.

101. When we are dealing with problems in finding the potential function
due to forces which have not circular symmetry!' about an axis and are using
Spherical Coordinates, we have to solve Laplace’s Equation in the form

rD?(rV) + ﬁDg(sin 0DyV) + ﬁDiV =0 (1)
[v. (x111) Art. 1].
To get a particular solution of (1) we shall assume as usual that V' is a
product of functions each of which involves but a single variable.
Let V = R.©.®; where R involves r only, © involves € only, and ¢ ¢ only.
Substitute in (1) and we get

. ,dO
idQ(rR) . 1 d(sm&E) 1 d2£ 0 @
R dr? Osinf do dsin? 0 dp?
. ,dO
or rsin® 0 d?(rR) N sin0d<smeﬁ) _ 1ad0
R dr? (C] db D de?’

As the first member does not contain ¢ the second member cannot contain
¢, and as it contains no other variable it must be constant; call it n?. Equation
(2) is then equivalent to the two equations

d*®

2
. dO
- £d2(7“R) 1 d[SIIl@@} B n2 0 (4)
R dr?  ©sinf  df sin”
(3) has been solved before and gives us
® = Acosng + Bsinng (5)

[v. Art. 13(a)].
The first term of (4) does not involve # and the second and third terms do
not involve r.

T d*(rR)
R dr?
Then (4) breaks up into

must, then, be a constant; we shall call it m(m+1) as in Art. 13(c¢).

=m(m+1)R (6)

1See note, page 12.
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d
1 d{sin 07?} n2
d — - 1) — =0.
an sn6 o [m(m D= g 970 )
(6) was solved in Art. 13(¢) and gives
R=Air™ 4 Byr— ™1 (8)
If in (7) we replace cosf by p we get
d 5, dO n?
du{(l—u)du}—i—[m(mﬁ-l)—lHQ}G)—O, (9)
the equivalent of
d?z dz n?
12252 9, %% N |z= 1
( x)dgcQ xdm—i-{m(m—k ) 1_x2}z 0, (10)

[v. (17) Art. 85], which was solved in Art. 85 for the case where m and n are
positive integers and n < m + 1. v. (18) and (19) Art. 85.
From (19) Art. 85 we get as a particular solution of (9)

3 Pa) g P )

= (1 —pu?
0= (1-pu") T dur

, (11)
if we restrict ourselves to whole positive values of m and n, as we shall do
hereafter unless the contrary is explicitly stated, and suppose m not less than
n.

A second but less useful particular solution of (9) is

2d"Qm (1)

O=01-p)2—10

Combining our results we have as important particular solutions of (1)

"P,
V =r"(Acosng + Bsinng)sin” Gddimju), (12)
1 . . n d”Pm(,u)
and V= W(A cosng + Bsinng) sin HW, (13)

where m and n are positive integers and n < m + 1.

"P, nd" Py,
d" Py (1) or (1— pu2)2 d" P ()
dum dun
is of cosf, and we shall represent it by P”(u)? and shall call it an associated

function of the nth order and mth degree. It is a value of © satisfying equation
(9) Art. 101.

102. sin" 6 is a new function of u, that

2Most of the English writers represent this function by T7% (11).
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By differentiating the value of P, (z) given in (9) Art. 74 we get the formula

n _ (Qm)‘ sin” ¢ m—n (m B n) (m —n— 1) m—n—2
o) = 2mml(m — n)! a a 2.2m —1)
(m—n)(m—n—-1)(m—-—n—2)(m—n—3)

2.4.(2m — 1)(2m — 3)

um—n—4 . (1)

the expression in the parenthesis ending with the term involving u® if m —n is
even and with the term involving p if m —n is odd.
For convenience of reference we give on the next page a table from which
P’ (u) can be readily obtained for values of m and n from 1 to 8.
cosnd P (p) and sinng Pl (u), that is,
d" P (1)
du™

n

d" Py (1)
du™

cosngsin” 0 and sinngsin”™ 6

are called Tesseral Harmonics of the mth degree and nth order, and are values
of V' which satisfy the equation

1 1
1 —— Dp(sin 6D —— D2V = 2
m(m+ 1)V + sin 0 o(sin6DoV) + sin? 0 V=0 @)
or its equivalent
1
m(m+ 1)V + D,[(1 — p*)D,V] + ngv =0. (3)

There are obviously 2m + 1 Tesseral Harmonics of the mth degree, namely

Py, . . dPy
P (w), cos¢sin0J, sin ¢ sin GJ
dp du
d’P,, d’pP,,
cos 2¢ sin? od;ﬂ(lu)’ sin 2¢) sin? ed/ﬂ(u)
d3P,, d3P,,
cos 3¢ sin® od,u?’(’u)’ sin 3¢ sin® 0 du?’(u)
cosma@sin™ Hid P (1) , sinmgsin™ 97(1 P (1)
d‘um d‘um

If each of these is multiplied by a constant and their sum taken, this sum
is called a Surface Spherical Harmonic of the mth degree, and is a solution of
equations (2) and (3). We shall represent it by Yy, (u, ¢) or by Y;,,(0, ¢).
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, d" P (1)
Table for csc™ 0P (1) = m
n=1 n=22
1
3u 3
§(5u2 -1) 15u
2
58 152
5 (717 = 3p) 5 (Th* = 1)
%(21%‘ — 14p® +1) %(3#’ 0,
105

21
§(33“5 — 303 + 5p)

?(33;/* —18u? +1

7
E(zngm‘ —495pu* 4+ 135u2 — 5)

63 -
§(143,ﬁ — 110p3 4 15u)

9
T6(715“7 —1001p® + 3852 — 35u)

315 .
1—6(143;16 — 143p* +33u2 — 1)

m n=3 n=4
1
2
3 15
4 1054 105
5 %(9;;2 —1) 9454
6 3 (1148 — 3p) 2 (12 1)
2 2
7 3—;5(143# —66u2 4 3) 342ﬂ(13u3 —3u)
8 | 200 o7 — 2007 43 | 1o (63t — 2642 + 1)

199
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m n=>5 n = 6. n=7 n=3~8
1

2

3

4

5 945

6 103954 10395

7 10295 (13p2 — 1) 135135 135135

8 1352135 (5u3 — ) @(m2 —1) | 2027025p | 2027025

1
™Y, (1, @) and ﬁYm(,u, ¢) are called Solid Spherical Harmonics of the
Tm

mth degree, and are solutions of Laplace’s Equation (1) Art. 101.
To formulate:—

Yo (u Z {A cosngsin” 9 m( )—|—B sin ng sin™ Qd%"n('u)} (4)
or Ym(u7¢)=Ao P () + Z[A coanbP"( ) + By sinng Py (p)] (5)
n=1

is a Surface Spherical Harmonic of the mth degree.

A Tesseral Harmonic is a special case of a Surface Spherical Harmonic, and a
Zonal Harmonic a special case of a Tesseral Harmonic; P, (1) being the Tesseral
Harmonic of the zeroth order and the mth degree; it might be written P2 (u).

EXAMPLES.
1. Show that
d?z dz n?
1—23)—= — 222 1) — =
( x)de xdx+ m(m+ 1) T2 |? 0
reduces to

2

(1- x%% —2(n+ 1):17% +[m(m+1)—nn+1)y=0

if we substitute (1 — x2)%y for 2z, even when m and n are unrestricted.
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2. Show that if in the second equation of Ex. 1 we let y = >_ apz® we get

(m—-n—k)(m+n+1+k)
(k+1)(k+2)

Ao = — ag (V. Art. 16)

whence z = p, (z) and z = ¢j}, (x) are solutions of the first equation of Ex. 1, no
matter what the values of m and n, if

pr(r) = (1 —a?)® [1 _(mon)(mtntl) ,

2!
m—-—n)im—-n—-2)m+n+1)(m+n+2) ,
L (m=n)( ot 4 1) ]
and
qgl(x):(l_ﬁ)g{x_(m—n—lz))(!m+n+2)x3
m—n—1m-n—=-3)(m+n+2)(m+n+4)
+< )( 5(! ( ﬁ__.,}

If m — n is a positive integer, p (x) or ¢ () will terminate with the term
involving 2™~ ", and in that case

(m—n)(m—-—n-—1)
2.(2m — 1)
(m—n)im—n—-1)(m—-n—-2)(m—n-—3)

2.4.(2m — 1)(2m — 3)

m—n—2

xm—n—4 .

the parenthesis ending with a term involving 2 if m —n is even and z if m — n

is odd, is a solution of the first equation of Ex. 1. If m and n are integers this

2™ml(m —n)!

2rmilm = n)! p )
(2m)!

103.  We have seen in the last chapter that in many problems it is im-
portant to be able to express a given function of cos#, that is of y, in terms of
Zonal Harmonics of u. So it is often desirable to express a given function of u
and ¢ in terms of Tesseral Harmonics of p and ¢.

If, for example, we are trying to find the Potential Function due to certain
forces and have the value of the function given for some given value of r, that is,
on the surface of some given sphere whose centre is at the origin of coérdinates,
of course the given value will be a function of # and ¢ and if we can express it
in terms of Spherical Harmonics of § and ¢ we have only to multiply each term
by the proper power of r to get the required solution of the problem. For we
shall then have a value of V satisfying Laplace’s Equation and reducing to the
given function of # and ¢ on the surface of the given sphere.

value of 7 is
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104. Suppose that we have a function of p and ¢ given for all points on
the unit sphere, that is, for all values of u from —1 to 1 and for all values of ¢
from 0 to 27, p and ¢ being independent variables, and that we wish to express
it in terms of Surface Spherical Harmonics.

Assume that

P 8)= 3 [AomPon )+ (A €08 n6 PR (11) + B sinng P () |- (1)
m=0 n=1

Let us consider first a finite case, and attempt to determine the coefficients
so that

m=p n=m
f(/% (b) = Z [AO,um(:U’>+ Z (An,m cosngPr (p) + By m sin n¢P:z(M))} (2)
m=0 n=1
shall hold good at as many points of the sphere as possible. The expression in
brackets in the second member of (2) is a Surface Spherical Harmonic of the
mth degree and contains 2m + 1 constant coefficients. The whole number of
coefficients to be determined is then the sum of an Arithmetical Progression of
p+ 1 terms the first term of which is 1 and the last is 2p + 1, and is therefore
equal to (p+ 1)2.

Let the interval from g = —1 to 4 = 1 be divided into p + 2 parts each of
which is Ap so that (p + 2)Ap = 2, and let the interval from ¢ = 0 to ¢ = 27
be divided into p + 2 parts each of which is A¢ so that (p + 2)A¢ = 2.

Then if we substitute in equation (2) in turn the values (—1 + Ap, A¢),
(—1+2Ap, Ag), - [-14+ (p+1)Au, Ag); (—1+ Au, 2A9), (—1+2Ap, 2A¢),
o=l (p+ DA, 2800 - [=1+ Ap, (p+ 1A, [-1 +2Ap, (p+1)Ad],
< [=14(p+1)Ap, (p+1)Ag]; since the first member in each case will be known
we shall have (p+1)? equations of the first degree containing no unknown except
the (p+1)? coefficients, and from them the coefficients can be determined. When
they are substituted in equation (2) it will hold good at the (p+1)? points of the
unit sphere where p+ 1 circles of latitude whose planes are equidistant intersect
p+ 1 meridians which divide the equator into equal arcs. If now p is indefinitely
increased the limiting values of the coefficients will be the coefficients in equation
(1), and (1) will hold good all over the surface of the unit sphere.

To determine any particular constant we multiply each of our (p+1)? equa-
tions by ApA¢ times the coefficient of the constant in question in that equation
and add the equations and then investigate the limiting form approached by the
resulting equation as p is indefinitely increased.

As p is indefinitely increased the summation in question will approach an
integration; and since dudp = —sin 6.dfd¢ is the element of surface of the unit
sphere, and as the limits —1 and 1 of p correspond to 7 and 0 of § the integration
is a surface integration over the surface of the unit sphere.

In determining any coefficient as A, ,,, in (1) the first member of the limiting
form of our resulting equation will be

27 1

[ do [ £, ) cosne Py (u)dp.

0 -1
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In the second member we shall come across terms of the forms

27 1 27 1
[ do [ sinigcosnoP () Pp(w)dp, [ do | cosiscosng Pl () Py (w)dp,
0 -1 0 -1

27 1 27 1
f d¢ f sin ne cos nd[P2 (p)]?du, f d¢ j cos® ng [Pl ()| *dp,
0 -1 0 -1

and other terms all of which come under the form

2T 1

[ do [ il 9)Ym (. $)p

0 —1

where Y, (1, ¢) and Y;(u, ¢) are Surface Spherical Harmonics of different de-
grees.

If we are determining a coefficient B,, ,,, the only difference is that sinn¢
and cosng will be interchanged in the forms just specified.

105.  The integral over the surface of the unit sphere of the product of two
Surface Spherical Harmonics of different degrees is zero.

27 1
That is [ do [ Y, 0)Yn (1, 0)dp = 0. (1)
0 —1

For as we have seen U = 7'Y}(u, ¢) and V = r™Y,,(u, ¢) are solutions of
Laplace’s Equation. Hence by Green’s Theorem

[WD,v -vD,U)ds =0 v. Art. 92.
D,V =D,V = mr™ 1Y, (1, ¢),
DU = DU = 'Y (i, $);
UD,V = VDU = (m = Dr' 1Y, ) Yo (1, 9),
= (m —DYi(p, ¢)Ym(p, ¢)

on the surface of the unit sphere; and

(m = 1) [ Vil 6) Yo, 6)ds = (m —1) [ do [ Yip, @)Yon (11, @)dps = 0.
0 1

Hence unless | = m
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EXAMPLES.
1. Obtain (1) Art. 105 directly from the equation

m(m +1)Y;u(11:6) + Dl(1 = 12D, Yon (1, 0]+ 7= D3V (1. 6) =0

1
v. (3) Art. 102, and Art. 91.

2. Show that the integral over the surface of the unit sphere of the product
of two Tesseral Harmonics of the same degree but of different orders is zero.

Suggestion:
27 o o
j sin k¢ coslp.dp = j sink¢sinlg.dp = f cos ke coslp.dp = 0.
0 ) 5 )
106. _fl P (p) PR (p)dp =0 unless | =m
2 !
- (mtn)t oy
2m+1 (m — n)!
For

d"Py(p) d"Pp(p)
d/.t" : dMn

| Pran Py mde = [ (1 p)" dp
1

—1 —

1
d"Pp(p) d" ' Pi(p)
=(1— )" )
( N’) dlun dun—l _:|1
1
4" P(p) d 2 @ Pon (1)
Ll -2y tEm g
Lo L e T g

1dn A" Py(p) d" P (1)

d
— [T e )

by integration by parts.
Replacing n by n—1 in equation (2) Art. 84 and remembering that

dnflpn
7:(1‘) is a possible value of 2"~ we get
dxn—1
A" P (1) d" P (1) A" P (1)
2 m m m o
(1—p )W - RMW+ [m(m + 1) —n(n—l)]w =0,
or if we multiply by (1 — p2?)"~!
A" Py () d" Py (1)
1— 2\n> T m\F*) 2 1— 2\n—12" -~ m\M*/)
(1—p7) v np(l —p”) m
d" P,
T mtm)m—n+ 1)1 — 2yt L)
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or

d

dp

n A" P (1)

n—1 dn_le(M)
dum™ ’

= —(m+n)(m—n+1)(1—p?) dpn—1

[(1 —1?)

Hence follows the reduction formula

f(l N Mz)nd"Pz(u)_d"Pm(u) d

Y dum du™
1
dn_lPl(M) an—1p (M)
— 2\n—1 m
= (m+n)(m—n+ 1>_fl<1 ) S
Using this formula n times we get

( (m+n)! (

f P () Py (p)dp = =) f Py(p) P (1) dps

-1 -1

=0 unless =m
2 (m+n)!
2m+1(m—n)!

v. Art. 89 (4) and (5).

107. We are now able to complete the solution of the problem in Art. 104

27 27 27
and since jcosQ no.dgp = fsin2 ng.d¢ = m and jd(b = 27 we get as the
0 0 0

coefficients in (1) Art. 104

2m 1

Ao =222 g [ (1, 0) Pl (1
-1
2m+1(m—n)(')27r ;
Ann = == Gyt | 49 | $0:6) cosno P () (2)
2m+1 (m—n)! ¢ . n
Bum = =g | 4 J J0n ) smno P ) (3)

whence

m=0oQ |: n=m

fu, @) = Z Ao,m P (1) + Z (Ap,m 08 g + By m sinne) Py (1) (4)

m=0 n=1

and the development holds good for all values of p and ¢ corresponding to points
on the unit sphere, provided only that the given function satisfies the conditions
that would have to be satisfied if it were to be developed into a Fourier’s Series.
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If we use p1 and ¢; in place of p and ¢ in (1), (2), and (3), we can write (4)
in the form

m=oo 27 1

- > (@m+1) { fdmff(uh%)Pm(u)Pm(m)dm
m=0 0 -1
27 1

i i m [(dén [ . é0) P () Pl ar) cos nl( — du)dpis | (5)

) -1

Formulas (1), (2), (3), and (4) are convenient for actual work; (5) is rather
more compactly written.

108. As an example let us express sin? § cos? 6 sin ¢ cos ¢ in terms of Sur-
face Spherical Harmonics.

Here flu,0) = %MZ(I — %) sin 2¢.

1 2m
2m+1 .
Aom = f P2 (1 — p?) P (1) dpe f sin 2¢.d¢ = 0,
0

2m+1 (m—n)! i
Apn = 2 +1 (m n)' j (1 — )P (p)dp j sin 2¢ cos ng.dp = 0,
' 0

1 27
_2m+1 (m—n)! 2N T . .
Bnm = I (mtn) Of,u (1= p*)P2(pw)du Oj sin 2¢ sin ng.dg,
=0 wunless n=2.
2T 2
Ifn=2 jsm 2¢sinng.dp = f sin? 2¢.d¢ = T, and
0 0
1
2m+ 1 (m —2)! 2d P ()
Bam Gimt) g
2, m + 2 ' J;L /*L d,U/2 /‘l‘

1

1 2m+1(m—2)  ,
- YL R et S
omml 4 (m+2)!f1”( W) gz
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by repeated integration by parts,

=0 if m>4,
1
4096
2 — 4 = — =
- 720_[1@ Didp=—=if m=4,
1 9 2! 4096 1
d Byy=——cimi—— = ——
o 2T a7 105
By a like process we find
1
Bgyg =0 and 3272 = E Hence
.2 29 L : L o .
sin® 6 cos” 6 sin ¢ cos ¢ = EP2 () sin2¢ + ﬁ]ﬂ (1) sin 2¢, (1)
1 d?P. 1 d?P,
- Esmzqssin2(9 d;g“) + msinzqssm?ed;g“), (2)
— L sin2gsin 2¢ + IR 0(7u? — 1) sin2¢ (3)
14 14 '

The required expression might have been obtained without using the formu-
las of Art. 107, by a very simple device, as follows:

1
sin? 0 cos? 0 sin ¢ cos ¢ = 5;12 sin? 0 sin 2¢. (4)
d*pP,,
If now we can express 2 in the form Z # the work will be done.
dp
2 _ LdQ(lﬁ)
B= a3
s 8 4 1
p = e Palp) + = Pa(p) + = Po(u), (5) Art. 95.

d*(pt) _ 8 d*Py(p)  Ad*Py(p).

dp?2 35 dp? 7 du?

2 2 d*Py(p) | 1 d*Pa(p)
105 dup? 21 dp?
and substituting this value in (4) we get (2).

whence

EXAMPLES.
1. Show that

1 1
3 -3 : 2 3 3 .
cos” @ sin” 6 sin ¢ cos® ¢ = {69301:’6(/1)4—1540}34(/1)} sin 3¢

2 1 1
- o P = 1P = gy Phn) sin.
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2. Show that

13.4!
PR+ SRR+ .

9.2!

)
cos 2¢ = 2cos 2¢ [4'P22(,u) + 5

3. If in a problem on the Potential Function V' = f(u,¢) when r = a, we
shall obviously have

m=oo rm n=m .
V= Z P {A07um(p) + Z (An,m cosng + By, p, sin n¢)PyrfL(#)}

m=0

—

n=
at an internal point and

m=oo m—+1

a n=m ) "
V = Z m |:A07um (/,[,) + Z (An,m COSs n¢ + Bn,m Si n¢)Pm(u):|
n=1

m=0

at an external point, where Ag mn, An m, and By, ,, have the values given in (1),
(2), and (3) Art. 107.

4. Solve problems (3), (4), and (5) of Art. 94 for the case where V is not
symmetrical with respect to an axis.

109.  Any Solid Spherical Harmonic ™Y, (u, ¢) being a value of V' that
satisfies Laplace’s Equation in Spherical Coordinates will transform into a func-
tion of x, y, and z satisfying V2V = 0 if we change to a set of rectangular axes
having the same origin and the same axis of X as the polar system. Moreover
the new function will be a homogeneous rational integral Algebraic function of
x, Yy, z, of the mth degree.

For each term of ™ cos n¢ P} (1) is of the form

Cr™ cos™ % $sin®* ¢ sin™ @ cos™ 2" g
where 2k<n+1 and 20<m-—n+1.
This may be written

Cr2l pm—=2l=n cogm=2l=n g pn=2k ginn=2k g cogn=2k ¢ 12k gin2k g gin2k ¢

which becomes C(z? +9y* + z2)la§m_2l_"y"_2kz2k,

and is a homogeneous rational integral Algebraic function of x, y, and z of the
mth degree. The same thing may be shown of each term of r sinn¢P (u).
Consequently r™Y,, (1, ¢) is a homogeneous rational integral Algebraic function
of the mth degree in z, y, and z.



SPHERICAL HARMONICS. 209

110.  Any homogeneous rational integral Algebraic function Sy, (z,y, z) of
the mth degree in z, y, and z, which is a value of V satisfying V2V = 0 contains
2m + 1 arbitrary constant coefficients.

For S,,(x,y, z) will in general consist of terms and will there-

(m4+1)(m+2)

(m+1)(m + 2)
2

fore contain coefficients.

V2S,,(x,y,2) will be homogeneous of the (m — 2)d degree and will contain
m(m — 1) coeflicients, which, of course, will be functions of the coefficients

in S,,(z,y,z). Since V2S,,(x,y,2) = 0 independently of the numerical values

m(m
of x, y, and z the — coefficients in V2S,,(z,y, 2) must be separately

m(m — 1)
2

equations of condition between the

1 2 -1
original coefficients and will leave (m+1)(m+2) — m(m )

zero, and that fact will give us
(m4+1)(m+2)

or 2m + 1 of them undetermined. S,,(z,y,z) contains, then, the same number
of arbitrary coefficients as ™Y, (i, ¢).

We can then choose the coefficients in Y, (u, ¢) so that it will transform
into any given S,,(z,y, 2).

Consequently a Solid Spherical Harmonic of the mth degree might be defined
as a homogeneous rational integral Algebraic function of x, y, and z, Sy (x,y, 2),
of the mth degree satisfying the equation VS, (x,y,z) = 0; and a Surface
Spherical Harmonic of the mth degree as such a function divided by (22 + 3% +
22)%, that is by r™.

EXAMPLES.
1. Show that if S,,(z,y, z) is a Solid Spherical Harmonic of the mth degree
V2[r" Sz, y,2)] = n(2m +n 4+ 1)r" 28, (z, y, 2).

Suggestion.:

2 S
VS =0. VPr=". DS, = mr - (Daer)? + (Dyr)? + (Dar)? = 1.

2. Show that if f,(z,y, z) is a rational integral homogeneous function of z,
y, and z of the nth degree it can be expressed in the form

fn(m7y7 Z) = Sn(xvya Z) + TZSn—2(m7y7 Z) + T4S"—4(xa Y, Z) +ey (1)

terminating with r"~18;(z,y, ) if n is odd, and with r"Sy(z, vy, 2) if n is even.

Suggestion: If a term rS,,_1 were present in the second member of (1), and

we were to operate with V2 on both members we should by Ex. 1 have a term

2
ll n—1 which would be irrational when all the other terms of the resulting
r
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equation were rational. No such term, then, could occur. In the same way it
may be shown by operating twice on (1) with V2 that there can be no term
r3S,_3 in (1); and thus step by step we can reach the result formulated in (1).

3. Express 22yz in the form Sy + 725 + rS;.
Suggestion: let 22yz = Sy + 128y + 145,
and take V2 of both members we get
2yz = 1455 + 2012 S.

Operate again with V2. 0 =1205). Whence

1 1
Sp=0, Sy= 2%, and Sy = ?(6332 — % =2y

4. Express sin® 0 cos? §sin ¢ cos ¢ in terms of Surface Spherical Harmonics.

, C o o x?yz
Suggestion: sin” ¢ cos” fsinp cos p = ——.
r
For result v. Art. 108 (3).
111. A transformation of coérdinates to a new set of axes having the

same origin as the old set will change a given Surface Spherical Harmonic into
another of the same degree. For such a transformation does not change the
form of Laplace’s Equation V2V = 0 if both sets of axes are rectangular, and it
is effected by replacing x, y, and z in the Solid Harmonic corresponding to the
given Surface Harmonic by xcosaj + ycosas + zcosag, xcosF1 + ycos Bz +
zcos B3 and x cosy; + y cosys + z cos y3 respectively where the cosines are the
direction cosines of the new axes, and it will leave the function a homogeneous
function of the mth degree in the new variables, and on dividing this by the
mth power of the unchanged radius vector we shall have a Surface Spherical
Harmonic of the mth degree.

112.  We have seen in Art. 75 that if (x1,y1,21) are the codrdinates of a

given point
1
V= (1)
V=) + (g =y + (2 - 21)?

is a solution of Laplace’s Equation V2V = 0, and transforming to spherical
coordinates that

V= - (2)

\/72 — 2rri[cos 0 cos 01 + sin O sin 0 cos(¢p — ¢1)] + 77

is a solution of

1 1
2 : 2
TDT(TV)—i——Sngg(smODgV)+7. 20D¢V:0. (3)

S
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If 7 is the angle between the radii vectores r and 7 of the points (z,y, z)
and (21,y1,21) (1) can be written

V= = (4)

/12 — 2rry cosy + 13

which must be equivalent to (2), and hence
cosy = cos 6 cos 01 + sin @ sin 6, cos(p — ¢1).

(4) which is a solution of (3) is of the same form as (5) Art. 75 and by developing
it as we developed (5) Art. 75 we find that

V = Py(cosv)

is a solution of the equation

1
2QD;V =0 (5)

1 .
m(m+ 1)V + @Dg(sm 0DgV) +

1
and that V =r"Pp(cosy) and V = ——=Pp(cosy)

rmtl
are solutions of (3).

If we transform our codrdinates keeping the origin unchanged and taking as
our new polar axis the radius vector of (x1,y1,21) v becomes our new 6 and
P,,(cos~) reduces to P,,(cosf), a Surface Zonal Harmonic, or a Legendrian,?
of the mth degree. It is then a Legendrian having for its axis not the original
polar axis but the radius vector of (x1,y1,21). Since a Legendrian is a Surface
Spherical Harmonic,

P, (cosy) = Pp[cos 6 cos 01 + sin 0 sin 07 cos(¢p — ¢1)]

is a Surface Spherical Harmonic of the mth degree.

It is, however, of very special form, since being a determinate function of
W, ¢, u1, and ¢ it contains but two arbitrary constants if we regard it as a
function of p and ¢, instead of containing 2m + 1.

It is known as a Laplace’s Coefficient, or briefly as a Laplacian, of the mth
degree.

We shall soon express it in the regulation form of a Surface Spherical Har-
monic.

The radius vector of (x1,y1,21) is called the axis of the Laplacian and the
point where the axis cuts the surface of the unit sphere is the pole of the Lapla-
cian.

We shall represent the Laplacian Py, (cos~y) by Ly, (i, ¢, 11, ¢1). Of course
L (i, 6,1, 1) = Py (1) = Prp(cos ), and is really independent of ¢.

3v. Art. 74.
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113.  If the product of a Surface Spherical Harmonic of the mth degree by
a Laplacian of the same degree is integrated over the surface of the unit sphere,

the result is equal to 5 7_:_ T multiplied by the value of the Spherical Harmonic
m
at the pole of the Laplacian.
That is,
2w 1
fd¢me(u O) Lun 11y 6, 1, 61)dpt = 5o (1, 61). (1)
0 2 ) 7 ) ) 2m + 1 )

Transform to the axis of the Laplacian as a new polar axis, and let Z,, (i, ¢)
be the transformed Spherical Harmonic. L,,(u, ¢, 11, $1) will become P, (u),
and (1) will be proved if we can show that

[ 46 [ Zunlos,6) Pt = 57 71, 0). @
0 -1
Zm (11, @) P (1) = Ao [Pm(:u)]Q + (An cosng + By, sinng) Py (1) P (1)
(v. (5) Art. 102).
J 211, 0) P ()46 = 27 Ao [P (1) and
0
1 2m Ar
J | 21, 6)Pn()dd = 5= Ao (v. (5) Art. 89).
-1 0

But Z,,(1,0) = Ay, since P,,(1) = 1 and P"(1) contains (1—1)% as a factor
and is equal to zero.
Hence (2) is proved.

114. We can now express a Laplacian in the regulation form as a Spherical
Harmonic, by the formulas of Art. 107.

Ly (1, &, 11, 91) =P (cosy) = Py, [cos 0 cos 81 + sin 0 sin 61 cos(¢d — ¢1)]

k=00 n=k
= [Ao,kPk (1) + Z(A”>k cosng + By, i, sinng) P (1)
k=0 n=1

2m + 1
47

where Ao m

2m 1
[[d6 [ Lunit, 8,111, 61) P (12)dp
0 -1

2m+1 4rm
47 2m+1

P (p1) = Pr(p1) by (1) Art. 113,
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Ao =T j as j Lun(11,6. 11, 61) cos g P (1)

- 2((m - ”))" cosndr P (1) by (1) Art. 113, and
B = P jd¢> f Ly (o6 ) sin o P ()

_ m sinngs P2 (1) by (1) Art. 113,

and Agp = A x = By = 0 by Art. 105 unless k = m. Hence
Lm(ﬂu ¢7 M1, ¢1) =

Poa() Pan(y1) ”me 0 P ) cos (o — o1) | (1)

Each term of a Laplacian involves a numerical coefficient, a factor which is a
function of p, a second factor which is the same function of p;, and a third
factor which is of the form cos k(¢ — ¢1). We give below a table of the first few
Laplacians, taken from Minchin’s Statics, omitting in each term for the sake of
brevity the function of p;.

By the aid of (1) we can write (5) Art. 107 more compactly. It becomes

m=o0

27 1
a 4:i Z 2m + 1) j d¢1 f f(:ula djl)Lm(/“La ¢7 M1, ¢1)du1 (2)

=0
m=o0

or F6,¢) = i (2m+1 j doy JF 01, 1) P (cos ) sin 61db; . (3)

m=0

LAPLACIANS.

coef. of cos0(¢p — ¢1)| coef. of cos(¢p — ¢1) | coef. of cos2(p — ¢1)

Lo 1
Ly K (1 _M2)%
1 2 2\ % 3 2
Ly 28— 1) 3u(l — p)2 71 —#)
1 3 15
L 15" = 3p) S —w?)z(p* — 1) =)

1 5 . 5
Ly 6—4(35u4 —30u% + 3) g(l — )2 (T — 3pu) 173(1 — ) (Tp? - 1)
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coef. of cos 3(¢p — ¢1) | coef. of cos4(p — ¢1)

Lo
Ly
Lo

) 3
L3 g(l—lﬂ)?

35 3 35
L 201 — p?)3 221 - p2)?

4 g H( =) sl —#)

EXAMPLE.

Work the problems of Art. 108 and Art. 108 Exs. 1 and 2 by the aid of (3)
Art. 114.

115. Such problems as we have handled in Arts. 98 and 99, and also
problems differing from them in not having circular symmetry about an axis,
can now be solved by direct integration.

For instance let it be required to find the value at an external point of the
potential function due to the attraction of a solid sphere whose density at any
point is proportional to the product of any power of the radius vector by a
Surface Spherical Harmonic.

Let p = CriYm(p, é1).

Then using our ordinary notation we have

CriYom (p1, 1)ridus
V=|d|d L
jTlJ ¢1j\/7“2—27“7“1c05'y—|—r

But by (3) Art. 77

1
/12 = 2rry cosy + 13

1
= {Po(cos v) + %Pl(cos v)

'VYL

2
”
+T—;P2(cosv)+ —i—— m(cosy) + -

if r>r.

Consequently since

jd¢1 IY (1, ¢1)Yn (p1, ¢1)dps =0,



SPHERICAL HARMONICS. 215

V reduces to the single term

C a 27 1
V= Al jr?+k+2dr1 jdﬁbl f Yo (1, 61) P (cos ) dpg
0 0 -1
C ( omekin 4w
= omtl bfrl a1 @) ) dry by Art. 113.

_AnC am™ TR Y ()
T 2m+1m+k+3 pmtl

EXAMPLES.

1. Solve by direct integration the problems worked in Arts. 98 and 99 and
Examples 1, 2, 3, and 4 of Art. 99.

2. The density of a solid sphere is proportional to the product of the squares
of the distances from two mutually perpendicular diametral planes; find the

value of the potential function at an external point.

Ans. p= kr‘f cos? 0y sin? 6 cos? ¢y

1 1 1
= kT'le |:15P0(,u1) + ﬁpz(/n) + ) cos 2¢1P22(,u1)

_ ip4(,u1) + L os 2¢51P42(ﬂ1)] :

35 105
M[a a® /1 1
=— |-+—= | =P — cos 20 P2
v a |:’I”+T3 (9 2<M)+18005 ¢ 2(’u))
a® (4 1 9
s (33134(/1) - ®0032¢P4 (N))} .

3. Solve Example 2 by an extension of the method of Arts. 98 and 99.

4. A conducting sphere of radius a connected with the ground by a wire
is placed in the field of force due to an electrified point at which m units of
electricity are concentrated. Find the value of the potential function due to the
induced charge.

Suggestion: Let Vi be the potential function due to the point, and V5 that
due to the induced charge, and let b be the distance of the point from the centre
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of the sphere. Then

Vi = m
YT Vb 2breosf + 12
m r r? ,
=3 |:P0(COS9) + EP1(COS(9) + b—QPQ(COSH) + - } it r<b.

m b b? .
= Py(cosh) + ;Pl(cos 0) + T—ng(cos 0)+---| if r>b.
2
Vo = AgPy(cosf) + AlgPl(cos 0) + Ag%Pg(cos 0)+--- if r<a.

2 3
= AO%PO(COS 0) + Ay %Pl(cos 0) + AQ%PQ(COS 0)+--- if r>a.

When r =a Vi + V5 = 0. Hence

and

m r r? _
V2:7? Po(cosf))+EPl(cose)er—QPg(cos@)Jruo if r<a
a? a*
EPl(cos 0) + )

= ma |:P0(COS 0) +

o P2(0059)+~-} if r>a.

Hence the effect of the induced charge is precisely the same at an external

m
point as if the sphere were replaced by o units of negative electricity concen-

2

a
trated at the point r = —

L 0 = 0. v. Peirce, Newt. Pot. Func., § 66.

116. If the two points P and P’ are taken on the line OH whose direction
cosines are A, u, and v, and if u and u’ are the values at P and P’ of any

PP'=0
partial derivative of u along the line OH and will be represented by Dju.
Let x, y, z be the coordinates of P and x+Ax, y+ Ay, z+ Az the coordinates
of P’; then

uw —u
continuous function of the space coérdinates, then limit [ PP } is called the

v —u=DyulAzx+ Dyuly+ D,uAz+e

where € is an infinitesimal of higher order than the first if Az, Ay, and Az are
infinitesimal (v. Dif. Cal. Art. 198).

u —u Az Ay Az €
Hence 5 = Douppy + Dyt + Datt o & 5
Az Ay Az
But P A, P w, and P v.

Therefore Dpu = ADzu+ pDyu+vD u. (1)
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If VZu =0, DEDED’u is a solution of Laplace’s Equation.
For V*(DED{D}u) = D?DIDL(V?u) = 0.

Hence if V2u = 0 Dju is a solution of Laplace’s Equation, and if OH;, OH.,
OHs, - - are a set of lines through the origin Dy, Dy, Dy, - - - u is a solution of
Laplace’s Equation.

117. If Hj is a rational integral homogeneous Algebraic function of z, ¥,
and z of the kth degree

H H 1
D, (lk) =D, (lk) D,r+ 7Dx(Hk)
r r r

ll’Hk Hk—l lIHk T’ZHk_l

T i+ ) rlt2
. Hy1
and is of the form g
: Hy, Hy,
The same thing can be proved of D, ( —l) and D, (—l) and therefore holds
r r
H
good of Dy, (—Zk .
r

If w is a homogeneous function of z, y, and z of the degree —m — 1 and
V2u = 0 then V2(r2m+ly) = 0.

V2(r? ) = 2m 4+ 1)(2m + 2)r*™
+22m + 1)r*™ Y(2D,u + yDyu + zD,u) + "V
=0,
since zDyu+yDyu+ zDu = —(m+ 1)u

by Euler’s Theorem (v. Dif. Cal. Art. 220).

M M
118. — = ——— is a solution of Laplace’s Equation (v. Art. 75)

r /x2+y2+22

and is of the form @.

M
Dy, Dy, Dy, -+ Dy, (—) is then a solution of Laplace’s Equation by Art.
r

Hy, . .
116; it is of the form it by Art. 117 and is a homogeneous function of the
r

degree —m — 1.
M
Therefore 2™+ Dy, Dy, Dy, - -- Dy, (—) is a solution of Laplace’s Equa-
r

tion, and is a rational integral homogeneous Algebraic function of z, y, and z
of the mth degree, and is consequently a Solid Spherical Harmonic of the mth

M
degree (v. Art. 110); and v™ 1Dy, Dy, Dy, -+ Dy, (*) is a Surface Spherical
r

Harmonic of the mth degree.
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Moreover since the direction of each of the lines OHy, OHs, -+ OH,, de-
pends upon two angles which may be taken at pleasure, these angles and M
are 2m + 1 arbitrary constants and may be so chosen that r™** Dy, Dy, Dy, - - -

M
Dy, (—) may be any given Surface Spherical Harmonic.
r
Consequently any given Surface Spherical Harmonic may be regarded as

formed by differentiating — successively along m determinate lines OH;, OHy
r

-+ OH,,, and is given except for the undetermined factor M when these lines
are given.

The lines OH,, OH,, OHs,---OH,, are called the azes of the Harmonic,
and the points where they meet the surface of the unit sphere the poles of the
Harmonic. The m axes of a Zonal Harmonic coincide with the axis of coordinates
(v. Art. 86) and consequently the m axes of a Laplacian coincide with what we
have called the axis of the Laplacian (v. Art. 112).

119.  Any Surface Zonal Harmonic Pp,(p) is equal to zero for m real and
distinct values of y which lie between —1 and 1; and any Associated Function
P" (u) is equal to zero for m —n real and distinct values of y, which lie between

—1 and 1.
L a2 —)m

P,(u) = Sl i v. Art. 83 (1).
dk 2 1)m
% contains (u? — 1)™~% as a factor. v. Art. 89.
m
From Rolle’s Theorem, “If f(z) is continuous and single-valued and is equal

df (x
to zero for the real values a and b of x, J;( ) is equal to zero for at least one

x
real value of  between a and b,” (v. Dif. Cal. Art. 126) it follows that since
d(p? —1)™

= 0 for at least one
dp

(u?> —1)™ = 0 when p = —1 and when p = 1

d(p* — 1™
dp

one value of u between —1 and 1, for it contains (u? — 1)~ ! as a factor and is

a rational Algebraic polynomial of the 2m — 1st degree.

d2 (MQ _ 1)m
du?

—1, m — 2 roots equal to 1 and two real roots between —1 and 1 which separate

d(p* —1)™

dp

value of p between —1 and 1. cannot be equal to zero for more than

In like manner we can show that = 0 has m — 2 roots equal to

the three distinct roots of
d*(p? —1)™
dyk
real roots separating the k + 1 distinct roots of
4" (2 — 1)

2mm!’ dum™
between —1 and 1, and it has no more since it is of the mth degree.

= 0; and in general if £ < m + 1 that

= 0 has m — k roots equal to —1, m — k roots equal to 1, and &

dkfl(IuQ _ 1)m 0
d’uk—l -

= 0 has m real and distinct roots

Hence P,,, (1) = 0 or
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dm+n(ﬂ2 _ l)m

d m—+n

roots between —1 and 1, and therefore t/ﬁat P (u) is equal to zero for m — n
distinct real values of p between —1 and 1. Since PJ(u) contains sin™ 6 as a
factor it is also equal to zero when y = —1 and when p = 1.

cosng is equal to zero for 2n equidistant values of ¢, and sinn¢ is equal
to zero for 2n values of ¢. Hence any Tesseral Harmonic sinngP! (u) or
cosndPl (p) is equal to zero for 2n equidistant values of ¢, for p = 1, for
1= —1, and for m — n real and different values of p between —1 and 1.

It follows that the value of any Surface Zonal Harmonic P,,(u) at a point
on the surface of the unit sphere will have the same sign so long as the point
remains on one of the zones into which the surface of the sphere is divided by
the m circles of latitude corresponding to the m roots of P, () = 0, and will
change sign whenever the point passes from one of these zones into an adjoining
one; and that the value of any Tesseral Harmonic sinn¢ P (1) at a point on the
surface of the unit sphere will have the same sign so long as the point remains
on any one of the tesserae into which the surface of the sphere is divided by
the m — n circles of latitude corresponding to the roots of P (y) = 0 and the
2n meridians corresponding to the roots of sinn¢g = 0, and will change sign
whenever the point passes from one of these tesserae into an adjoining one.

The same reasoning shows that = 0 has m — n distinct real
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CHAPTER VIL!

CYLINDRICAL HARMONICS (BESSEL’S FUNCTIONS).

120. In Arts. 11 and 17 we obtained
z = AJy(z) + BKy(x) (1)
as the general solution of Fourier’s Equation

2z 1 %

proip F )
.’E2 .’E4 CEG
where @) =1t mp —ppgt 3)

and is called a Cylindrical Harmonic or Bessel’s Function of the zeroth order;
and where

22 24 /11 28 1 1 1
K = 1 J—— - — s+ += - 4
o(z) = Jo(z)logx + 92 92 42 <1 + 2> + 22 42 62 <1 ot 3> @

and is called a Cylindrical Harmonic or Bessel’s Function of the Second Kind,
and of the zeroth order.

In Art. 17 we found that z = Jp(x)
is a particular solution of Bessel’s Fquation
d’z  1dz n?
ol 1— — =0 5
dx2+xdx+( x2>z ’ (5)
where if n is unrestricted in value
" x? x?
In(x) = T 52 + 51
2nT(n+ 1) 22(n+1) 242l(n+1)(n+2)
6
x

“FamrDmromty ] ©

and is called a Cylindrical Harmonic or Bessel’s Function of the nth order; and
that unless n is an integer

z = AJy(z) + BJ_,(z)

is the general solution of Bessel’s Equation.
If n is an integer it can be shown that

Tu(@) = (~1)"J_(2),

! The student should re-read carefully Arts. 11, 17, and 18(d) before beginning this chapter.
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(v. Forsyth’s Diff. Eq. Art. 102), and then
z=AJ,(z) + B{K,(x)}
is the general solution of Bessel’s Equation and

k=n—1
n

(Kn(2)} = Jo(z)logz — % (g)* 3 W (g>2k

k=00
T\" (—1)* 11
et 14+ -+ 1...
() k_o(n+k)!k![+2+3+ *

[

1 1 T\ 2k
1oL 4.~ | (=
gty T +n+k}(2) (M)

v. M. Bocher, Ann. Math. Vol. VI, No. 4.

121. A useful expression for J,(z) as a definite integral can be obtained
without difficulty from Bessel’s Equation [(5) Art. 120] by a slight modification
of the method given by Forsyth (Diff. Eq. Art. 136).

It was shown in Art. 17 that z = 2™v is a solution of Bessel’s Equation if v
satisfies the equation

d*v 2n—|—1@

dx? Tz dx
b

Assume v= chos(:ct)dt (2)

+v=0. (1)

where x and t are independent, T is an unknown function of ¢, and a and b are
at present undetermined.

b
d
Then d—v =— jtT sin(zt)dt
x
d ‘
and d—xg = —ItQT cos(zt)dt.
a

Substituting in (1) after multiplying through by x, we have
b b
f(l — t3)Tx cos(xt)dt — j(?n + 1)¢T'sin(xt)dt = 0. (3)
By integration by parts we find that
b
I(l — 3Tz cos(xt)dt = [(1 — t3)T'sin(xt)

dT
(=%

8 - QL—c

- 2tT} sin(xt)dt,
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and (3) reduces to

T dT
(1- tQ)Tsin(att)} - [(1 — )% + (20 — IT | sin(at)dt = 0. (4)

If we determine 7" so that
ar
(1— t“')E +(2n — T =0, (5)
b
and a and b so that (1—-t)T sin(xt)} =0 (6)
(4) will be satisfied and our problem will be solved. (5) gives

T=0C(1—)" 3, (7)

and (6) will obviously be satisfied if a = —1 and b = 1.

1 _ 42\n
Hence v="C f (1= )" cos(wt)dt is a solution of (1),
) Vi
(1 — t2)" cos(xt)dt
and z=Cz" 8
jl — ()

is a solution of Bessel’s Equation.
If we let ¢t = cos ¢ in (8) we get

z=Cz" jsinQ" @ cos(z cos ¢)dg.
0

Expand cos(z cos ¢) into a series involving powers of  cos ¢, integrate term
by term by the aid of the formulas

oI

()
— 22—~ [Int. Cal. (1) Art. 9],
T(3+1)

r("3 (")

ZF(m;n + 1)

(Int. Cal. Art. 99 Ex. 2), and compare with (6) Art. 120, and we get

L
2
fsm r.dr =
0

L
2
Isinn rcos™ x.dx =
0

Jn(x) = e F(n 7) !sm ¢ cos(z cos ¢)dg 9)
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If n is a positive integer (9) reduces to

1 @
7w 1.35.---(2n — 1)

In(z) = sin®" ¢ cos(z cos ¢)de. (10)

O

Let n =10 in (9) or (10) and we get

s

Jo(z) = % jcos(ac cos ¢)dg. (11)

0

EXAMPLES.

1. Obtain Formula (11) directly from Fourier’s Equation, (2) Art. 120.

1
2. Prove by integration by parts that if n > —5

j sin®™ ¢ cos ¢ sin(x cos ¢)dp = x f sin®""2 ¢ cos(z cos ¢)dep.
0 0
. . . 1
3. Prove by integration by parts that if n > 5

j sin®™ ¢ cos ¢ sin(x cos ¢)dg
0

= é f[Zn sin?™ ¢ — (2n — 1) sin®" 2 ¢] cos(z cos $)d¢.
0

122. We can now readily obtain a number of useful formulas.
Differentiate (11) Art. 121 with respect to = and we get
s

ngix) _ _% brcos(psm(x cos ¢)de

™

__* fsin2 @ cos(z cos ¢)dg by Ex. 2 Art. 121.
T
0

dJi
Hence by (10) Art. 121 c(l)a(cx) = —Ji(x). (1)
In like manner by the aid of Exs. 3 and 2, Art. 121, we can obtain the

relations

dfa" Jn(2)]

d =a"Jp-1(2) (2)
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1
i 1
. Ao~ 1a ()
" Jp(x .
T Ins1(x) ()
1
if ——.
rn > B
(2) can be written
ja:" n—1(x)dx = 2" J,(x) (4)
ifn> L 0
ifn> 3.
(2) and (3) can be written
dJy(z e n
x”% +nx" VT, (x) = 2" T 1 (z)
—n dJn xz —n— -n
and daE ) _ ne” "V (x) = —x7" T (2),
dJn(r) n
or pra n—1() EJn(m) (5)
dJ,(z n )
and i Int1(x) + EJn(x), (6)
dJy,
whence 2 In() = Jp_1(x) — Jpy1(z) (7)
dz
2n
and ?Jn(x) = Jno1(x) + Jny1 (). (8)

The repeated use of formula (8) will enable us to get from Jy(z) and Jy(x)
any of Bessel’s Functions whose order is a positive integer. For example, we
have

To(a) = 2 (@)~ Jofa)

Jy(z) = (% ~1)h) - %Jg(m).

From a table giving the values of Jo(z) and J;(z), then, tables for the func-
tions of higher order are readily constructed. Such a table taken from Rayleigh’s
Sound (Vol. 1., page 265) will be found in the Appendix (Table VL.).

By the aid of (5) and (6) any derivative of J,(x) can be expressed in terms
of J(z) and Jp41(z). For example

~ 1} () + %Jn_i_l(x).

f%m:rmn

dx? 2
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If we write Jy(z) for z in Fourier’s Equation [(2) Art. 120], then multiply
through by zdz and integrate from zero to x, simplifying the resulting equation
by integration by parts, we get

de((l);:r) + foo(z)dx = 0;
0
whence by (1) jmJo(m)dm = zJi(x). 9)
0

If we write Jo(z) for z in Fourier’s Equation, then multiply through by

ddJ,
1:2% dx and integrate from zero to z, simplifying by integration by parts
v

we get
22 [ (dJo(z)\? o o
9 [ ( c(;x ) + (Jo(x))Q] — J‘x(JO(fE))QdI —0:
whence by (1) [aldo(o)de = G ((o(e)? + (a (o)7L (10)

0

In like manner we can get from Bessel’s Equation [(5) Art. 120] the formula

[ 2 (@) = [a:Q (C”sf))z (22 — n?)(Jn (@) (1)

which (6) enables us to reduce to the form

xT

fx(Jn(ﬂf))2d93 = 7[(%(%))2 + (Jnt1(2))?] = nwdn (@) Jng1 (@). (12)

Formulas (9), (10), (11), and (12) will prove useful when we attempt to
develop in terms of Cylindrical Harmonics.

Values of J,, (z) for larger values of  than those given in Table VI., Appendix,
may be computed very easily from the formula

2 12 — 4n?)(32 — 4n?
(@) =\ 2 [1 - 2!(2(95)2 )
(12 — 4n?)(3% — 4n?) (5% — 4n?)(7* — 4n?) T o
+ 1(82) —---}cos(m—4—n2)
2 [1%2 —4n?
o { 18z

(12 — 4n?)(3% — 4n?)(5% — 4n?) . ™ ™
- 31(8z)° e ] s (x v ”5) ' (13)
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v. Lommel, Studien iiber die Bessel’schen Functionen, page 59.

The series terminates if 2n is an odd integer, but otherwise it is divergent. It
can be proved, however, that in any case the sum of m terms differs from J, (x)
by less than the last term included, and consequently the formula can safely be
used for numerical computation.

EXAMPLES.

1. Confirm (1), (2), and (3), Art. 122, by obtaining them from (3) and (6),
Art. 120.

2. Confirm (1), Art. 122, by showing that Fourier’s Equation will differen-
tiate into the special form assumed by Bessel’s Equation when n = 1.

3. Show that (9), Art. 122, is a special case of (4), Art. 122.

4. Show that the limit approached by J,(z) as n increases indefinitely is
zero, and by the aid of this fact and of (8), Art. 122, prove that

D (®) = 2[0u(2) — (04 2 Tnsol@) + (04 4 oala) -]
5. Prove that
dJn(z) 2

2 = Z[hnda(@) = (1 D as2(@) + (1 ) agale) =]

2 1

2
6. Show that the substitution of <1 - y2> for z in Legendre’s Equation
n

will reduce it to the form

2\ 72

y°\ d°z 1 2y dz 1
- ) =+ (-2 )=+ (1+=)z=0
( n2> dy2+(y n2> dy+ +n z ,

and that the limiting form approached by this equation as n is indefinitely
increased is Fourier’s Equation, and hence that Jy(z) can be regarded as some

2\ 2
T
constant factor multiplied by the limiting value approached by P, (1 — 2)
n
as n is indefinitely increased.

123. To complete the solution of the drumhead problem taken up in Art.
11, we found that it would be necessary to develop a given function of r in the
form

fr)y = Ay do(par) + Aado(uar) + AsJo(usr) + - -

where p1, po, ps, &c., are the roots of the transcendental equation Jy(pa) = 0;
and in Art. 11, Ex. the development of unity in a series of precisely the same
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form was needed.

(a) Let us consider another problem.

The convex surface and one base of a cylinder of radius a and length b are
kept at the constant temperature zero, the temperature at each point of the
other base is a given function of the distance of the point from the centre of the
base; required the temperature of any point of the cylinder after the permanent
temperatures have been established.

Here we have to solve Laplace’s Equation in Cylindrical Co6rdinates ([X1v]
Art. 1).

1 1
D}u+ =Dyu+ —Dju+ D2u =0 (1)
r r
subject to the conditions
u=0 when z=0

u=20 « r=a
u=f(r) “ z=0b,

and from the symmetry of the problem we know that Diu =0.
Assuming as usual u = R.Z we break (1) up into the equations

2z
&2 2Z=0
dz?
d*R 1dR
) + S + u*R =0,
whence u = sinh(uz)Jo(ur) (2)
and u = cosh(pz)Jo(ur) (3)
are particular solutions of (1).
If pu1, is a root of Jo(pa) =0 (4)

u = sinh(prz)Jo(prr)
satisfies (1) and two of the three equations of condition.
If then f(’l") = AIJO(,UIT) + AQJO(,U'ZT) + A3J0(,u3r) + .. (5)
W1, fo, i3, &c., being roots of (4),

sinh (w2 sinh(usz sinh(usz
w= A MJO(Nlr)_’_AQwJO(MQT)_kAgMJ
sinh(p2b)

! sinh(u1b) sinh(p3b) olugr)+--- (6)

satisfies (1) and all of the equations of condition, and is the required solution.
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(b) If instead of keeping the convex surface of the cylinder at the tem-
perature zero we surround it by a jacket impervious to heat, the equation of
condition v = 0 when r = a will be replaced by D,u = 0 when r = a, or if

w = sinh(2)Jo (ur),

by M =0 when r = a,
dr

that is by wJb(pa) = 02 or (v. (1) Art. 122)

by Ji(pa) = 0. (7)

If now in (5) and (6) w1, pe, s, &c., are roots of (7), (6) will be the solution
of our new problem.

(¢) If instead of keeping the convex surface of the cylinder at the tempera-
ture zero we allow it to cool in air at the temperature zero, the condition u = 0
when r = a will be replaced by D,u + hu = 0 when r = a, or if

u = sinh(pz)Jo(ur)
by b (ur) + hdo(ur) =0 when r=a
that is by padi(pa) + ahJo(pa) =0 or (v. (1) Art. 122)
by padi(pa) — ahJo(pa) = 0. (8)

If now in (5) and (6) w1, 2, p3, &c., are roots of (8), (6) will be the solution
of our present problem.

124. It can be shown that Jo(z) =0 (1)
Ji(x) =0 (2)
and xJ(x) + AJo(z) =0 (3)

have each an infinite number of real positive roots (v. Riemann, Par. Dif. GL.,
§ 97). The earlier roots of these equations can be computed without serious
difficulty from the table for the values of Jy(x) (Table VI., Appendix).

The first twelve roots of Jo(z) = 0 and Jy(z) = 0 are given in Table IV.,
Appendix, a table due to Stokes. Large roots of Jo(z) = 0 and of Jy(z) = 0
may be very easily computed from the formulas

' 050661 .053041 262051

- =s—.925 - ... 4
r° T s—1p T @s—1p (4)

oY o gy 1982 015300 245270 5
T 4s+1 = (4s+1)3  (4s+1)°

dj
2We shall find it convenient to use the familiar notation of f/(z) = % (v. Dif. Cal., p.
x
119).
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given by Stokes in Camb. Phil. Trans., Vol. IX., x(g) representing the sth root
of Jo(z) = 0, and x(‘;) the sth root of Jy(z) = 0.

125.  We have seen in Art. 123 that U = sinh(ugz)Jo(ugr) and V =
sinh(p;2)Jo(pr) are solutions of V2U = 0 and V2V = 0 if we express Laplace’s
Equation in terms of Cylindrical Coérdinates (v. (1) Art. 123).

Hence, if [dS represents the surface integral over any closed surface, we

have
f(UDnV —VD,U)dS =0

by Green’s Theorem (v. Art. 92).
If we take the cylinder of Art. 123 as our surface, and perform the integra-
tions and simplify the resulting equation, we find

“ -1
[ o) o (ur)dr = ——— [uxado(ma)Jg (uxa) — mado(ua) Jj(ua)]
0

P2 —
= m[ﬂkaJo(Mla)Jl(Mka) — wado(pra)Ji(ma)l. (1)
Hence if py, and p; are different roots of
JO(/’L@) =0,
or of Ji(pa) =0,
or of pnady(pa) — AJp(pa) =0,
then J?‘Jo(/,LkT)Jo(/uT)dT =0. (2)
0
EXAMPLE.

Obtain (1) Art. 125 directly from Fourier’s Equation

d?Jo(ur) N 1dJo(pr)
dr? r o dr

+ 2 Jo(ur) = 0.

126. We are now able to obtain the developments called for in Art. 123.
Let f(r) = A1Jdo(par) + Asdo(per) + AsJo(psr) + - - (1)
w1, p2, p3, &c., being roots of Jy(ua) =0, or of Jy(ua) = 0, or of
pady(pa) — AJo(pa) = 0.

To determine any coefficient Ay multiply (1) by rJo(prr)dr and integrate
from zero to a. The first member will become

a

f rf(r)Jo(ugr)dr.

0
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Every term of the second member will vanish by (2) Art. 125 except the
term

[ ) dr = % [ a(o()de = % [(olma))? + (r(pna))?
0 Hi g
by (10) Art. 122.
2 a
fence A = oG + (1 (4] J P b )

The development (1) holds good from 7 =0 to r = a (v. Arts. 24, 25, and 88).
If 1, po, pus, &c., are roots of Jy(ua) = 0, (2) reduces to

a

S [P F) T 3)

A= P |

If py, po, ps, &c., are roots of Jy(ua) =0, (2) reduces to

a

2 frf(r)Jo(ukr)dr. (4)

A= Py )

If p1, po, ps, &c., are roots of paJi(ua) — AJo(ua) = 0, (2) reduces to

_ 2,&2 a
Ak a ()‘2 + Mﬁa2)€]o(lu,ka))2 J‘rf(T)JO(MkT)dT. (5)

For the important case where f(r) =1

HEa

jrf(r)JO(ukr) ITJO wr)dr = f xJo(x)dx = —Jl(/ika) (6)
0 0 0

=
o]

by (9) Art. 122, and (3) reduces to

A=—2 7)

pradi(pra)

(4) reduces to A = 0 except for k =1 when pp = 0 and we have A; =1,

2
(A2 + pa?)Jo(pra)”

(5) reduces to A =

(8)
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EXAMPLES.

1. Show that in (12) Art. 11 any coefficient Ay, has the value given in (3)
Art. 126; and in the answer to Art. 11, Ex. the value given in (7) Art. 126.

2. Show that if a drumhead be initially distorted so that it has circular
symmetry, it will not in general give a musical note; that it may be initially
distorted so as to give a musical note; that in this case the vibration will be a
steady vibration; that the frequencies of the various musical notes that can be
given when the distortion has circular symmetry are proportional to the roots
of Jy(z) = 0; that the possible nodes for such vibrations are concentric circles
whose radii are proportional to the roots of Jo(z) = 0.

3. A cylinder of radius one meter and altitude one meter has its upper
surface kept at the temperature 100°, and its base and convex surface at the
temperature 15°, until the stationary temperature is set up. Find the tempera-
ture at points on the axis 25 cm., 50 cm., and 75 cm. from the base, and also
at a point 25 cm. from the base and 50 cm. from the axis.

Ans., 29°.6; 47°.6; 71°.2; 25°.8.

4. An iron cylinder one meter long and twenty centimeters in diameter has
its convex surface covered with a so-called non-conducting cement one centime-
ter thick. One end and the convex surface of the cylinder thus coated are kept
at the temperature zero, the other end at the temperature of 100°. Find to
the nearest tenth of a degree the temperature of the middle point of the axis,
and of the points of the axis twenty centimeters from each end after the tem-
peratures have ceased to change. Given that the conductivity of iron is 0.185
and of cement 0.000162 in C. G. S. units. Find also the temperature of a point
on the surface midway between the ends, and of points on the surface twenty
centimeters from each end. Find the temperatures of the three points of the
axis, supposing the coating a perfect non-conductor, and again, supposing the
coating absent. Neglect the curvature of the coating.

Ans., 15°.4; 40°.85; 72°.8; 15°.3; 40°.7; 72°.5; 0°.0; 0°.0; 1°.3.

127.  If instead of considering the cooling of a cylinder as in Art. 123 we
have to deal with a cylindrical shell whose curved surfaces are co-axial cylinders,
we are obliged to use the Bessel’s Functions of the second kind. Let our equations
of condition be

u=0 when z=0, u=0 when r=a,
u=f(r) “ z=b, u=0 “  r=ec
Then (v. Art. 123)

Jo(pxc)

Ko(pxce) Kolpsr)

u = sinh(pgz) | Jo(xr) —
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where g is a root of the equation

Jo(pc)

Jolka) = Ko(pc)

Ko(pa) =0 (1)

will satisfy Laplace’s Equation [(1) Art. 123] and all of the equations of condition
except the second.

k=00

Hence = 3 AT | (uer) — 0 ot 2
is the required solution if
flr) = ) Ay {Jo(ukﬂ") - JO(MC)KO(MM’)} (3)
— Ko(prc)

The development (3) is easily obtained.
Call the parenthesis for the sake of brevity Bo(ugr). Then by the method
of Art. 125 we get if we integrate over our cylindrical shell

jrBo(ukr)Bo(,ulr)dr =0 (4)

if ug and py are roots of (1); and by an easy extension of (10) Art. 122

C

fT[Bo(ukT]ZdT = 5{By(unc)]* — a®[Bg (pwa))*} (5)

a

Determining the coefficients in (3) as in Art. 124 and simplifying by the aid
of (4) we have

2 [ o) o) — L Ko
Ay = 2

~

Jo(pkc
Ko(pxce)

Jo(prc)

/ 2
K, (lffkc) KO (:uka):|

(6)

c? [Jé(uw) - Ké(uw)} a2 [JO/(/%@) -

EXAMPLE.

If a membrane bounded by concentric circles of radius a and radius b, and
fastened at the edges, is initially distorted into a form symmetrical with respect
to the centre, and then allowed to vibrate

k=00

= COS C T)— 7J0(,U1kb) T
y= ]; Ay, cos(pxct) [JO(Mk ) KO(,LLkb)KO(Mk )

where Ay is obtained from (6) Art. 127 by replacing ¢ by b.
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128. If in the cooling of a cylinder v = 0 when z = 0, u = 0 when z = b,
and v = f(z) when r = a, the problem is easily solved.
If in (2) and (3) Art. 123 p is replaced by ui we can readily obtain

z = sin(pz)Jo(pri)
and z = cos(pz)Jo(pri)

as particular solutions of Laplace’s Equation [(1) Art. 123]; and

, z? zt z8
@) =1+t op T ppe T M)
and is real.
iy kmz
flz) = Z AksmT
k=1
2 ¢ kmz
where A = 3 j f(z)sin sz (2)
by Art. 31 (7) and (8).
kmri
k=00 Jo | ——
kw2 0( b )
Hence u= ; Ap, sin TW (3)
- (=
is our required solution.
EXAMPLES.

1. If the cylinder is hollow and we have © = 0 when z = 0, v = 0 when
z="0,u =0 when r = ¢, and u = f(z) when r = a; then

u = kio:oAk Sin@ JO(IWZM) — Fo(kgm)
b
k=1

W55 wE).

- b/ _ b_
5D wED
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where Ay, has the value given in (2) Art. 128, and

Ko(xi) = Ko(xi) — Jo(wi) logi
2 at 20

. T
:Jo(m)logf—*—%(I-F%)—m(%-ké—k%)—

[v. (4) Art. 120], and is real.

2. A hollow cylinder 6 feet long whose inner surface has the radius 3 inches,
and whose outer surface has the radius 1 foot, has its bases and outer surface
kept at the temperature 0°, and its inner surface at the temperature 100°, until
the permanent state of temperatures is established; find the temperatures of
two points in a plane parallel to the bases and half-way between them, one of
which is 6 inches and the other 9 inches from the axis. Ans., 49°.6; 20°.2.

129. If in the problem of Art. 123 the temperatures of the points of the
upper base of the cylinder are unsymmetrical so that v = f(r,6) when z = b,
we have to get particular solutions of Laplace’s Equation [(1) Art. 123] for the
case where Diu is not equal to zero. We readily find that

u = sinh (uz)[A cosng + B sinng]J, (ur)
and u = cosh (pz)[A cosng + B sinng|J, (ur)

are such solutions, and that

n=oo k=

smhukz
= B, 1
u= 3 3 g Anrcosns + Buxsinnalur) 1)

is the solution of the given problem if

nookoo

(r,¢) = Z Apk cosng + By g sinng)Jn (uxr) (2)

n=0 k=1

where py is a root of the equation

uta
EXAMPLES.

1. Show that

ern(ukr)Jn(,ulr)dr
0

a
= m[ﬂljn(ﬂka)%(ﬂla) — preJn(pua) Jy, (pua))

a
= m[MkJn(Mla)JnH(ﬂka) — I (pra) Jni1(a)l.
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2. Show that

jr[Jn(ukr)]er
0

115, 2 s 2
= 5 [ (nma)? + (2 = 75 (uma)?]
- %[(Jn(uka))Q + (Jn-‘rl (Mka)>2] - naJn(Mka)Jn-i-l(ru’ka)'
i

3. Show that in Art. 129

27 a
f f (r, @) Jo(pexr)dr
0

1 0
A = - 5
Ta @A)l
Bo =0,
27 a
f f (r, @) cos ngJy, (pugr)dr
AL, = 2% 0
o a?[Jn41 (pra)]? ’
27 a
j j (r, @) sinngJ, (ugr)dr
29 0
Buj ==
* ™ [']'n-&-l(,u'ka)]Q

4. Obtain the coefficients for the case where the convex surface of the cylin-
der is impervious to heat.

5. Obtain the coefficients for the case where the convex surface of the cylin-
der is exposed to air at the temperature zero.

6. Show that if in a drumhead problem of Art. 11 the initial distortion is
unsymmetrical, so that we have to solve the equation [x1] Art. 1 subject to the
conditions z = f(r,¢) when t =0, D;z = 0 when t =0, z = 0 when r = a, the
solution is

3
[
8
ES

z= cos(pxct)(Ap k cosng + By, i sinng)Jy, (ugr)
k=1

Il
=]

n

where Ay i, Bok, An k, and By, ; have the values given in Ex. 3.

7.  What modifications do the statements made in Ex. 2, Art. 126, need to
make them apply to the unsymmetrical case treated in Ex. 67
Show that any possible nodal system in Ex. 6 is composed of concentric cir-

cles and of radii whose outer extremities are equidistant. v. Rayleigh’s Sound,
Vol. 1., Arts. (202-207).
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8. Solve the problem of Art. 127 and of Art. 127. Ex. for the unsymmetrical
case.  Suggestion: AJ,(x)+ BK,(z) is a solution of Bessel’s Equation.

9. Solve the problem of Art. 128 and of Art. 128. Ex. 1. for the case where
u= f(z,¢) when r = a.  Suggestion: u = sin uz(A cosn¢ + B sinng)J, (uri)
is a solution of Laplace’s Equation, and f(z, ¢) can be developed into a double
Fourier’s Series [v. (15) Art. 71].

10. Show that in dealing with a wedge cut from a cylinder by planes passed
through the axis, or with a membrane in the form of a circular sector, it may
be necessary to use Bessel’s Functions of fractional or incommensurable orders.

11.  Bernouilli’s Problem (v. Chapter IX). In considering small transverse
vibrations of a uniform, heavy, flexible, inelastic string fastened at one end
and initially distorted into some given curve, we have to solve the equation
D2y = c*(zD2y+ D,y), subject to the conditions D;y = 0 when t = 0, y = f(x)
when ¢t = 0, y = 0 when = = a; the origin being taken at the distance a below
the point of suspension and the axis of X taken vertical.

k=00
Show that y= Z Ay, cos et Bo(pix),
k=1
x z? z3
where Bo(x)zl—ﬁ+ﬁ_m+...

= Jo(2Vw)

and uy is a root of the equation

Bo(pa) = Jo(2uv/a) = 0,

a

[ F@Bo(tz)de [ f(2)Jo(2p/T)de
0

_ _ 0
and A= EABGEE T el G

12.  As asimple case under Example 10 consider the vibrations of a circular
membrane fastened at the perimeter and also along a radius and then initially
distorted (v. Rayleigh’s Sound, Art. 207). In this case we must modify the
formula given in Ex. 6 by dropping out the terms involving cos n¢ and by taking

n= % The required solution is

. mo
z = By, 1 cos pct sin TJ% (pr)
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S (pa)

= =0
w2

where p is a root of

o

a

2 a
oj d¢ oj rf(r,$)sin m7¢J7 (per)dr

[T ()P

2
and By ==
™

For the terms in which m is odd, Jm () can be readily obtained from (13)

Art. 122, which will become a finite sum.
For example, (13) Art. 122 gives the values

2 2 /1
Ji(x) =1/ —sinz; Js(x)= (sinx—cosx);
2 T 2 T\ X
2
Js(x) = =/ — Kl + 32) sinx + 3cosx}; &e.
2 T x x

13.  The question of the flow of heat in three dimensions involves a problem
not unlike the last.

Suppose the initial temperatures of all points in a sphere of radius ¢ given,
and let the surface be kept at the temperature zero. Then we have to solve the
equation

2

a
Dyu = -
r

1 1
D, (r’D —— Dy(sin 6D ——Dj 1
r(r"Dyu) + sin 0 o(sin@Dou) + sin® 6 ot (1)
([rv] Art. 1) subject to the conditions

u=0 when 7r=c,
u= f(r,0,¢) when t=0.

If we assume u = T.R.V where T is a function of ¢ only, R of r only, and V of
0 and ¢ only, (1) can be broken up into

dr
E + a2a2T =0 (2)
1 1
1 —— Dy (sin 6D —— D%V =
m(m+ 1)V + sin 0 o(sin6DgV) + sin? @ sV =0 ®

2 2 1
and d*R dR—l—[aQ—m(m—’— )

—-— +—— R =0. 4
dr?2 7 dr r2 ] (4)
Hence T = e~ "t V = Y, (1, ¢) [v. Art. 102 (2)], and R is still to be found.
If in (4) we let = ar and z = Ry/ar it becomes
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which is satisfied by z = J,, ;1 (). (v. Art. 17.)

1
Therefore R= \/ﬁjwwé (ar).

f(r,0,¢)= i i 2m +1) jd¢1ff r,01, 1) P (cos ) sin 61db;

m=0
by (3) Art. 114,

m=0o0 n=m

Z Z Apmnfmn(r)cosng + By o n (1) sinng] Pr ().

m=0 n=0

k=00

\/;fm,n (7") = le7n,k(]m+% (OékT)

k=0

where oy, is a root of the equation

Jm—l—% (ac) _
(ac)m+

2 f re f»,,hn(T)Jm_,'_% (agr)dr
0

d Conk =
an s,k CZ[JT/n+1(O‘kC)P
2
\/;Fm,n (T) = Dm,n,kjm+% (Oékr)
m=0
2 f T%Fm,n(r)Jm-i,-% (aur)dr
where Dong = —2

c? [Jv/n-&-% (ae)]?

The final solution is

k=00

i i |:P777LL(M) Z (A nCrm ks COSTUD
m=0 n=0

k=1

. 2 2
+ Bin Dok sinng)e™ ¢ aktJer% (agr)

cf. Riemann, Par. Dif. Gl., §§ 72 and 73.
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CHAPTER VIIIL.

LAPLACE’S EQUATION IN CURVILINEAR COORDINATES.
ELLIPSOIDAL HARMONICS.

130.  Orthogonal Curvilinear Coérdinates.
If Fi(z,y,2) = p1
Fy(z,y,2) = p2 (1)
Fs(z,y,2) = p3

are the equations in rectangular coordinates of three surfaces that are mutually
perpendicular no matter what the values of p1, p2, and p3, the parameters pq,
p2, and p3, may be regarded as a set of coordinates for a point of intersection
of the three surfaces, in the sense that when p1, p2, ps are given the point in
question is determined, and when the point is given the corresponding values of
p1, P2, P3, can be found.

From equations (1) z, y, and z can be expressed in terms of p1, p2, and p3.
Suppose this done. If now z, y, z are the rectangular coérdinates of the point
p1 = a, p2 = b, p3s = ¢, the rectangular codrdinates of the points p; = a + dp;,
p2 = b, p3 = ¢, are obviously x+D,, x.dpi1+e€1, y+D,, y.dpr1+e€2, 2+D,, z.dpi +e3,
where €1, €2, and €3 are infinitesimals of higher order than dp;. Hence the square
of the distance between the points will differ by an infinitesimal of higher order
than that of dp? from dn? where

dni = [(Dp,x)* + (Dy,y)* + (D, 2)°dpf.

1
Let o = (Dp ) + (D) + (D2
1
1
T = (Dpy)? + (D) + (D) @
2
1
ﬁ = (Dpsz)z + (Dﬂ3y)2 + (D/ISZ)Z'
3

Then if dn; is the element of length normal to the surface p; = a, dny normal
to po = b, and dng normal to ps = ¢

dp1 dp2 dps
dny = —, dng =—=, dnz=—. 3
ny I N s ns s (3)
The element of surface d.S; on the surface p; = a is easily seen to be
dpadps
dS; = ; 4
'S Thohs (4)
and the element of volume dv is
dp1dpad
dy = 2P1aP24ps. (5)

hihahs
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EXAMPLE.

Show that h} = (Dyp1)? + (Dyp1)? + (D.p1)?
h3 = (Dyp2)® + (Dyp2)® + (D2p2)?
hi = (Daps)® + (Dyps)® + (Dzps)*.
D, D D,
Suggestion: If hy has the value just given p17 yP1 , L
hq hq hy
tion cosines of the normal at any given point of p; = a. (v. Int. Cal. page 161.)

Then
D

Dyp; p1
dny = 222y 4 DuPr g, | Depry _—d
n1 Iy + Iy + Iy 2 P1-

are the direc-

131.  Laplace’s Equation in orthogonal curvilinear codrdinates.
If we apply the special form of Green’s Theorem

{[[ v2vdadydz = [ D,vas (v. Art. 98)

to the space bounded by the surfaces p1 = a, p2 = b, p3 = ¢, p1 = a + dp1,
p2 = b+ dpa, ps = c+ dps, we have

V2Vdpirdpadps
hihshs
dpadps dpadps hy
—h1D,, V hD,V D —D, V| dpidpad,
1p1 h2h3 + P1 h2h3 + P1 hghg pP1 p1ap2G03

dpzdpy dpsdp; ha
_hQDP2V h h +h2Dp2V h, h +Dp2 MDPQV dpldpgdp3

dp1dps dp1dps hs
h3DP3V n h2 +h3DP3V h h2 +Dp3 RDPJV dpldpgdpg,

whence

hy hs hs
V2V = hlhzhg[ (h W DmV) +D,,2(h - Dmv) +Dp3(h1th,,3v)],

(6)

and Laplace’s Equation in our curvilinear system is

h1 ha hs _
h1h2h3|:D (h Is D, V>+Dp2<h I Dp2v>+Dp3(h I D, V):| =0. (7)

If it happens that V2p; = 0, V = p; will satisfy (7) and we shall have

h h
hihahs D, —L ) = 0. In like manner if V2py = 0 we have D,, =2 ) = 0,
hghg hShl
h
and if VZp3 = 0 we have D, (hZ) = 0; and therefore (7) reduces to
172

hiD5 V +h3D5 V +h3D5 V =0 (8)
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when V2p; =0, V2py = 0, and V?p3 = 0.

132. If instead of having the value of the Potential Function V' given on
the surface of a sphere as in our Spherical Harmonic problem, we have it given
at all the points on the surface of an oblate spheroid, and are required to find its
value at any internal or external point, we can easily get a solution by methods
in no essential respect different from those already employed, if only we rightly
choose our system of coordinates.

If we take an ellipse and an hyperbola having the same foci, and revolve
them about the minor axis of the ellipse, we shall get a pair of surfaces which
are mutually perpendicular; a plane through the axis of revolution will cut both
the spheroid and the hyperboloid orthogonally.

The equations of the three surfaces can be written:—

2 2 2

T Y z

Fl(CC,y,Z,)\):F—Fm—Fﬁ—l:O (1)
1‘2 y2 2,2

F. =+ 4+ 1=0 2

2($?y7za:u) H2 + #271)2 + ’ug ( )

F5(z,y,z,v) =z —ve =0, (3)

where A2 > b2 > p2, 2b being the distance between the foci.

For all values of A, i, and v consistent with the inequality above written the
surfaces (1), (2), (3) intersect in real points and cut orthogonally.

A, i, and v can be so chosen that the surfaces will intersect in any given point,
and therefore can be taken as a set of curvilinear cotrdinates, and Laplace’s
Equation can be expressed in terms of them by the aid of Formula [xv] Art. 1.

From (1), (2), and (3) we readily get

x2 _ )\2M2
b2(1 + v?)
)\2 _ b2 b2 2
y? = ( ())g 1) (4)
o A2p20?
b2(1+v2)’
[ A0 —p? pv
hence Dyr=-——+—, Dyy= -+ , Dhz=——;
v M arer M T RV e T T e
1 )\2 _ M2
and w2 RSV (5)
[v. 130 (2)]. In like manner we get
)\2 _ ,U,Q

}T%_b2_,u2
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1 )\2[L2
and W2 R4 22 (7)

and [xv] Art. 1 becomes

K _DAM/AZ = 12D, V]

b(1+v2)\ /0% — p

A
+ D, |u\/b% — p2.D,V
RERW s we-Duvl
b(N* — 1)
N/ (2 —B) (5 — 1)
which is Laplace’s Equation in terms of our Spheroidal Coérdinates A\, p, and
v.

D,[(14v*)D,V] =0, (8)

If now in place of A, i, and v we can introduce some function of A\, some
function of p, and some function of v which, therefore, will represent the same
set of orthogonal surfaces, and if we can choose these functions «, (3, and -,
which of course are functions of x, y, and z, so that VZ2a = 0, V28 = 0, and
V2y = 0, equation (8) must reduce to the simple and symmetrical form given
in [xvi] Art. 1.

These functions «, 3, and 7 are easily found. Equation (8) is V2V = 0
expressed in terms of A, p, and v. Assume that V is a function of A only; then
D,V =0, and D,V =0, and (8) reduces to

DAAWV A2 =02.D\V] =0
whence A/ A2 — b2 ud

>
Cld)\
dV = ———,
AVAZ — b2
A
and V= %1 sec™! 7

and is a function of A which satisfies Laplace’s Equation.
Take this as a leaving ¢ at present undetermined, so that
c1dA c A
do=—22 and a=—sec ' .

A2 —b? b b

In the same way we get

d
dﬁzi and 6:%sech_1%,

N
(v. Int. Cal. Art. 46, Ex.)

d
dy = 1Cj’r 11//2 , and v =cgtan lu.
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Substituting these values in (8) and taking ¢; = —c3 = b, and ¢z = 1, (8)
reduces at once to

D2V DRV N2 2

2y —
A2 2 212 D“/V =0, (9)
or since A=bseca, p=bsechf, and v =tan~, (10)
to cos? aD2V + cosh? ﬁD%V + (cosh? 8 — cos? a)D?YV =0 (11)

which is Laplace’s Equation in terms of what we may call Normal Oblate
Spheroidal Codrdinates.

In using (11) it is to be noted that the point whose codrdinates are (a, 5,7)
is the point of intersection of an oblate spheroid whose semi-axes are bsec o and
btan o, an unparted hyperboloid of revolution whose semi-axes are bsech 5 and
btanh 3, and a plane containing the axis of the system and making the angle
with a fixed plane; and that if the axis of revolution is the axis of Y and the
fixed plane is the plane of XY, the rectangular codrdinates of («, 3,7) are

x =bsecasechfcosy, y=btanatanhB, z=bsecasechfsiny (12)

[v. (4)].
If now we let o range from 0 to E7 0 from —oo to oo, and  from 0 to 27, we

shall be able to represent all points in space; and if we agree that negative values
of 3 shall belong to points below a plane through the origin and perpendicular
to the axis of revolution and positive values of § to points above that plane,
not only shall we have no ambiguity, but also the rectangular coérdinates of any
point as given in (12) will have their proper signs.

EXAMPLES.

1. If the spheroid is a prolate spheroid, the ellipse and confocal hyperbola
must be revolved about the major axis of the ellipse, and the plane must contain
that axis. In place of equations (1), (2), and (3) of Art. 132 we have, then,

2 2 2

x Y z
Niv—pta_p =0
22 y? 52
E—i_;ﬂ—bz—'—/ﬂ—b?_l:o
z—vy =20
where A > 2> P
h2: /\2—b2 h2: b2—u2 h2: b2(1—|—V2)2 .
o — 2 2N 3 (A2 — b2)(b2 — p2)
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Laplace’s Equation becomes

1 1
D 2 _ v \D — D 2 _ 2D
b2(1 4 v2) A =)DV + B2(1+ 12) ul(b” = 1) DL V]
)\2 _M2 )
e =y D=0 ()
D2v D3V 22— 2
1 3 a D2 _ )
(1) reduces to 50—g + 15— 2T e e =0 (2)
bdA bdp dv
h = "33 19 = = -—
where da STk g e dy Bl

A
a=ctnh™! 7 8 = tanh™* %, and v =tan '

Since A=bctnha, p=btanhfB, and v =tany
(2) can be reduced to
sinh? aD2V + cosh? BD3V + (sinh? o + cosh? ﬁ)D?/V = 0. (3)

In using (3) it is to be noted that the point («, 3,7) is the point of intersec-
tion of a prolate spheroid whose semi-axes are bctnh o and b csch o, a biparted
hyperboloid of revolution whose semi-axes are btanh 3 and bsech 3, and a plane
containing the axis of revolution and making the angle v with a fixed plane.

If the fixed plane is that of (XY") the rectangular codrdinates of any point
(o, 3,7) are

z =bctnhatanh 8, y = bceschasechBcosy, 2z = bceschasechsinqy,

and o may range from oo to 0, 3 from —oo to oo, and 7 from 0 to 27. Negative
values of § are to be taken for points lying to the left of a plane through the
origin perpendicular to the axis of revolution.

2. Transform Laplace’s Equation in Spherical Codrdinates [x111] Art. 1 to
the symmetrical form

a?D2V + cosh® BD3V + cosh® BD2V = 0

0
where a=-, ﬁzlogtani, and v = ¢.

3. Transform Laplace’s Equation in Cylindrical Codrdinates [x1v] Art. 1 to
the symmetrical form

DIV + D3V +e** D3V =0

where a=logr, [B=¢, and ~=z2.
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133. In each of the cases we have considered, it has been easy to pass
from Laplace’s Equation in terms of the chosen codrdinates representing an
orthogonal system of surfaces to the symmetrical form [xvi] Art. 1; and it is
evident that our new coordinate « is a value of V' corresponding to such a
distribution that the surfaces obtained by giving particular values to p; are
equipotential surfaces; that g is a value of V' corresponding to such a distribution
that the surfaces obtained by giving particular values to ps are equipotential
surfaces; and that - is a value of V' corresponding to such a distribution that the
surfaces obtained by giving particular values to ps are equipotential surfaces.
a, B, and ~ are called by Lamé “thermometric parameters.”

The condition that these values should exist, for a given system of surfaces,
that is, that the distribution described above should be possible, is readily
obtained. We shall work it out for a. It is merely the condition that V in
Laplace’s Equation may be a function of p; alone.

If V is a function of p; alone

dv dv dVv
D,V =—D,p1, D,V =—D,p1, D,V =-—D,p,
dpl 1 Y dpl vP1 dp1 1
>V dVv
D2V = ——(Dyp1)?> + —D?
xT dp12( $p1) + dpl xpl
d?v %
D2V = ——(D,p1)? + —D?
Yy dplz( ypl) + dpr yP1
d2v av
DXV = ——(D.p1)* + —D2p1.
dp12( pl) dpl pl
2 2 2 d2V 2 2 2 dV
Therefore [(Dyp1)” + (Dyp1)* + (Dzp1) }dmz + [Dip1+ Dypr +sz1]d71 =0
D2py + D2p, + D?p, 2V dv
whence 5 5 5 == 5+ 7
z M1 yF1 zP1 1 1
(D2p1)? + (Dyp1)? + (Dzp1) dpr® ~ dp
V201
or o = Fi(p1)
1

where F)(p1) may be any function of p; alone. Our required conditions are then

v2ﬂ1
= Fi(p1)
h% 1 1
v2
5 = Fa(po) e
2
vQ
thg = F3(ps3)
3

and when they are fulfilled the original curvilinear cotérdinates p1, p2, p3, corre-
spond to possible equipotential or isothermal surfaces, thermometric parameters
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a, B, and ~y exist, and the reduction of Laplace’s Equation to the symmetrical
form [xvi] Art. 1 is possible.

134. Returning to our Oblate Spheroid problem of Art. 132 we can pro-
ceed as usual to break up our equation (11) Art. 132.

Assume that V' = L.M.N, where L is a function of « only, M of 8 only, and
N of ~ only. (11) Art. 132 becomes

cos>a d®L  cosh®? 3d*M  [cosh? B — cos? a] d®N

P — 0
I da? T M dp N v
or 1 cos? a dziL N 1 cosh? 3 M s AN
Lcosh? 3 —cos2ada? M cosh?3 —cos?a dB?2 N dy?’

The first member is independent of v, and the second member is independent
of o and 3, and the two members are identically equal. The second member
is then independent of «, 3, and v and must be constant; call it n2. We have,
then,

EN
2o d’L h? 8 d2M
and y@ + COS]\/[ p e n?(cosh? B — cos? o) = 0. (2)
(1) gives us N = Acosny + Bsinny. (3)
(2) can be written
2ad’L h? 8 d> M
?W + n? cos’a = n? cosh? § — COSM ﬂTm =m(m+1),

o d’L 2 0.2
whence cos” oy + [n®cos*a—m(m+1)]L =0 (4)

2 *M 2 2
and cosh” 8 PTeE + [m(m + 1) — n” cosh” G| M = 0. (5)

If we introduce = tanh § in (5) it becomes
d*M dM n?
2 _

where since x = tanh § and § may have any value from —oo to co,  may have
any value between —1 and 1. (6) is a familiar equation having for a particular

solution P
M=(1- xQ)%dx#(x) = P”(x) = P} (tanh ). (7)
(v. Arts. 101 and 102).

If we introduce in (4) = tan « it reduces to

d27L dL n?
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(8) is an unfamiliar equation, but it can be treated as (6) was treated if we take
the pains to go back to the beginning and follow the steps of the treatment of
Legendre’s Equation.

This labor can be saved, however, by noting that if we let z = y (8) becomes
i

d’L dL n?
1—y))— —2y— 1) — L=0
and is identical in form with (6). Hence
n dn m
L=P'(y) and L=(1- yz)fil?i(y) (v. Art. 101),
yn
where y = i tan «, are particular solutions of (4).
We can avoid imaginaries if we use the values
nd” m
L= R ad L= (s ), )

Since we assumed V = L.M.N we have

V = (Acosny + Bsinny) Py (tanh 8)(—:)™ " P/ (i tan o)
d"Qum(it 10
and V= (Acosny + Bsinny)P" (tanh 5)i™ " sec” am (10)
as particular solutions of (11) Art. 132.

If the problem is symmetrical with respect to the axis of the spheroid D?YV =
0, n? = 0 and our particular solutions (10) reduce to

V = (=)™ P (i tan a) P, (tanh ) } (11)

and V =™ Q,, (i tan o) Py, (tanh §).

If, then, V is given on the surface of a spheroid as a function of 3 and -, we
must 